Abstract:
PURPOSE: A graphene electrode manufacturing method using inkjet printing is provided to reduce the manufacturing time and loss of raw materials. CONSTITUTION: A graphite oxide is dispersed in water using a supersonic wave generator and a waterborne graphene oxide nano particle solution capable of being used for a conductive ink for inkjet printing is manufactured. In order to evenly deposit the waterborne graphene oxide nano particle solution on a piezoelectric polymer film, the chemical property of the surface of the piezoelectric polymer film is improved through plasma processing. The waterborne graphene oxide nano particle is injected in a printer head, a graphene oxide thin film is formed by discharging an ink on both surfaces of the piezoelectric polymer film through a printer. The piezoelectric polymer film in which the graphene oxide thin film is formed is placed inside a vapor deposition reactor containing a reducing agent and a graphene electrode is formed by vaporizing the reducing agent below an appropriate temperature in a vacuum. Active noise is removed by adhering a transparent supporting material to a graphene electrode based piezoelectric polymer film. [Reference numerals] (AA) Output(V); (BB) Time(sec); (CC,DD) Graphene electrode;
Abstract:
PURPOSE: A method for fabricating polyvinyl alcohol/conductive polymer coaxial nanofibers is provided to easily fabricate the nanofibers which are composed of the conductive polymer using a simple vapor deposition polymerization mediated electrospinning process. CONSTITUTION: A method for fabricating polyvinyl alcohol/conductive polymer coaxial nanofibers comprises the following steps: forming polyvinyl alcohol nanofibers on a sensor substrate by electrospinning a polyvinyl alcohol(PVA) solution; introducing a metallic ion on the polyvinyl alcohol nanofibers through a soaking process; manufacturing the polyvinyl alcohol/conductive polymer coaxial nanofibers on the polyvinyl alcohol nanofibers having the metallic ion through a vapor deposition polymerization mediated electrospinning process; and producing a sensor for detecting electrical properties changes of the nanofibers using the polyvinyl alcohol/conductive polymer coaxial nanofibers.
Abstract:
본 발명은 항 신생혈관생성인자 압타머 (anti VEGF-RNA aptamer)가 부착된 극미세 고분자 나노재료를 이용한 고감응성 전계효과 트랜지스터 암진단용 바이오센서 장치 제작에 관한 것이다. 본 발명은 금속 소스 전극, 금속 드레인 전극, 게이트 및 극미세 고분자 나노재료로 이루어진 채널영역을 포함하는 극미세 고분자 나노재료 트랜지스터 어레이, 상기 극미세 고분자 나노재료 트랜지스터 어레이의 채널영역을 구성하고 있는 극미세 고분자 나노재료의 표면에 공유적으로 결합하여 신생혈관생성인자 (Vascular endothelial growth factor; VEGF)를 타겟(target)으로 하는 항 신생혈관생성인자 압타머로 이루어진 것을 특징으로 하는 극미세 전도성 고분자 나노재료 트랜지스터 어레이를 이용한 고감응성 전계효과 트랜지스터 암진단용 바이오센서에 관한 것이다. 본 발명에 따르면, 본 발명가들이 기존에 발명한 (국내 출원번호: 10-2007-0120359) 전계효과 트랜지스터 바이오센서의 감응도에 있어서 성능을 월등하게 향상시키기 위하여, 낮은 온도 조건하에서 기존에 사용된 전도성 고분자 나노재료 (200 nm; CPNT1)의 사이즈(직경)가 1/2배로 작아진 극미세 전도성 고분자 나노재료(100 nm; CPNT2) 제조에 성공하였다. 제조된 극미세 전도성 고분자 나노재료를 전극기판상에 부착한 후, 부착된 극미세 전도성 고분자 나노재료에 항 신생혈관생성인자 압타머 부착하여 고감응성 전계효과 트랜지스터 암진단용 바이오센서 제작에 성공하였다. 본 연구자들에 의해서 제조된 항 신생혈관생성인자 압타머를 활용하여 신생혈관생성인자를 검출하는 암진단용 바이오센서는 감응도에서 기존에 존재하는 무기반도체(아연 나노와이어)를 활용한 신생혈관생성인자 진단용 바이오센서 (Biosens Bioelectron 2009;24:1801-05)의 감응도를 약 100배 향상시키는 결과를 보여주었다.
Abstract:
본 발명은 화학적 산화 중합을 이용하여 은 나노 입자 함유한 폴리로다닌 (polyrhodanine) 고분자 나노 섬유 제조에 관한 것으로서, 은 이온이 녹아 있는 용액 상에 로다닌(rhodanine) 단량체를 주입하여 강한 전단력(shear force)을 가해 중합 반응을 유도하게 되면, 은 이온이 로다닌 단량체를 산화시키면서 중합 반응을 유도하는 동시에 은 이온 자체는 은 나노 입자로 환원되는 반응을 통하여 은 나노 입자를 함유한 폴리로다닌 나노 섬유를 제조하는 방법을 제공한다. 본 발명에 따르면, 간단하고 저렴한 공정을 이용하여 은 나노 입자를 함유한 폴리로다닌 나노 섬유를 용이하게 제조할 수 있으며, 효과적으로 은 나노 입자를 폴리로다닌 매트릭스(matrix) 내에 포함하기 위해 추가적인 개질 공정이나 개질제가 요구되지 않는다는 장점을 가진다. 또한 본 발명을 통해 제조될 수 있는 은 나노 입자 함유 폴리로다닌 나노 섬유는 은 나노 입자의 선처리 공정이 필요 없을 뿐 아니라, 은 이온을 개시제(initiator)로 사용함으로써 제조 과정이 단순하다. 더욱이, 본 발명에서 제조될 수 있는 은 나노 입자를 함유한 폴리로다닌 나노 섬유는 고분자 나노 섬유의 회수가 매우 용이하다는 장점을 갖는다. 화학적 산화 중합, 은 나노 입자 함유 폴리로다닌 나노 섬유
Abstract:
PURPOSE: A method for manufacturing an electrochromic device using a vapor deposition method and a printing are provided to form a uniform polymeric film by configuring a conductive polymeric electrochromic layer through a vapor deposition polymerization method. CONSTITUTION: A printing polymerization initiator for a conductivity polymer is prepared. A surface of a working electrode is modified hydrophilically. Initiator solution is formed by a desired pattern using the printing method on a working electrode in which the surface is reformed. A conductivity polymer forming the electrochromic layer is polymerized by an evaporation polymerization reaction.
Abstract:
PURPOSE: A manufacturing method of silica nanotube and nanoparticle is provided to manufacture a nanotube and nanoparticle at the same time through one step process by using a surfactant solution and a vapor deposition reaction. CONSTITUTION: The manufacturing method of silica nanotube/nanoparticle includes following steps.(a) The surfactant solution 'capable of forming a nanoparticle structure' and an acid solution generating a hydrolysis- condensation reaction of a silica precursor are mixed. The surfactant solution is manufactured.(b) The surfactant solution is introduced to a hard template.(c) The silica precursor is reacted to the hard template, in which 'the surfactant solution is introduced' through the vapor deposition method. The silica nanotube / nanoparticle structure is manufactured with the one step process.(d) The silica nanotube / nanoparticle is obtained by eliminating the hard template. The kind of the surfactant is P65, P84, P103, P123 and their mixture.
Abstract:
PURPOSE: A manufacturing method of titanium oxide/polymer core/shell nanoparticle is provided to manufacture massively titanium oxide/polymer core/shell nanoparticle through a photopolymerization using only the ultraviolet ray without using additional initiator. CONSTITUTION: The manufacturing method of titanium oxide/polymer core/shell nanoparticle includes following steps.(a) The titanium oxide nanoparticle is dispersed into a solvent.(b) A monomer is injected into the solvent with 'the dispersed titanium oxide'. A physical adsorption of the monomer is induced in the surface of the titanium oxide nanoparticle.(c) The ultraviolet ray is added to the surface of the titanium oxide nanoparticle with the adsorbed monomer. In the surface, a production of electrons and radicals is induced. In the surface, the polymerization of the monomer radical is induced.(d) The titanium oxide/polymer core/shell nanoparticle is collected from the polymerized solution through a precipitation.
Abstract:
PURPOSE: A manufacturing method of magnetic carbon nanoparticle including nitrogen is provided to manufacture magnetic carbon nanoparticle with high portion of nitrogen by using a carbonization process at a specific temperature range. CONSTITUTION: The manufacturing method of magnetic carbon nanoparticle including nitrogen includes following steps. (A) A spherical polymer nanoparticle is manufactured from a polymer monomer containing nitrogen by using a micro-emulsion polymerization.(B) The sphere polymer nanoparticle is divided from reactant, dried and collected.(C) After a charring process, the magnetic carbon nanoparticle including nitrogen is manufactured from the dried sphere polymer nanoparticle. The polymer monomer contains nitrogen and is polypyrrole, polyaniline, and polyacrylonitrile or polyrhodanine. The temperature of the charring process is 500-1000°C.
Abstract:
PURPOSE: A method for preparing polycation nano particles using vapor deposition polymerization is provided to easily obtain polycation particles in nano sizes based on simple polymerization conditions. CONSTITUTION: The surface of silica nano particles is modified into hydrophobic. A radial initiator is added to the surface of modified silica nano particles is decompressed. A cation monomer is added to the silicon nano particles in which the initiator is added. The monomer is vaporized by increasing temperature. The polymerization of the monomer on the surface of the silicon nano particles is induced. Polycation nano particles are collected.