Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting, by a control system for the environment, control settings for the environment based on internal parameters of the control system, wherein: at least some of the control settings for the environment are selected based on a causal model, and the internal parameters include a first set of internal parameters that define a number of previously received performance metric values that are used to generate the causal model for a particular controllable element; obtaining, for each selected control setting, a performance metric value; determining that generating the causal model for the particular controllable element would result in higher system performance; and adjusting, based on the determining, the first set of internal parameters.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes repeatedly selecting control settings for the environment based on (i) a causal model that identifies causal relationships between possible settings for controllable elements in the environment and environment responses that reflect a performance of the control system in controlling the environment and (ii) current values of a set of internal parameters; and during the repeatedly selecting: monitoring environment responses to the selected control settings; determining, based on the environment responses, an indication that one or more properties of the environment have changed; and in response, modifying the current values of one or more of the internal parameters.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining causal models for controlling environments. One of the methods includes obtaining data specifying baseline probability distributions for each of a plurality of controllable elements; maintaining a causal model; repeatedly performing the following: selecting control settings for the environment based on the causal model and values for a particular internal parameter of the control system that are sampled from a range of possible values; selecting control settings for the environment based on the baseline probability distributions; monitoring environment responses to the control settings selected based on the causal model and the control settings selected based on the baseline probability distributions; determining, for each of the possible values, a measure of a difference between a current system performance and a baseline system performance; and updating how frequently each of the possible values is sampled.
Abstract:
Methods and systems for implementing experimental trials on utility grids. Variations in grid parameters are selected to introduce into utility grids to improve the value of learning from each experimental trial and promoting improved utility grid performance by computing expected values for both learning and grid performance. Those trials are used to manage the opportunity costs and constraints that affect the introduction of variations into utility grid parameters and the generation of valid data that can be attributed to particular variations in utility grid parameters.
Abstract:
Computer implemented methods and systems facilitate development and distribution of content for presentation on a display or a multiplicity of networked displays, the content including content elements. The content elements may include graphics, text, video clips, still images, audio clips or web pages. The development of the content is facilitated using a database comprising design rules based on principles of cognitive and vision sciences. The database may include design rules based on visual attention, memory, and/or text recognition, for example.
Abstract:
Methods and systems for implementing experimental trials on utility grids. Variations in grid parameters are selected to introduce into utility grids to improve the value of learning from each experimental trial and promoting improved utility grid performance by computing expected values for both learning and grid performance. Those trials are used to manage the opportunity costs and constraints that affect the introduction of variations into utility grid parameters and the generation of valid data that can be attributed to particular variations in utility grid parameters.
Abstract:
The present invention is directed to systems and methods for establishing and maintaining constraints on automated experimentation systems and the permissible ranges for experimentation. Methods and systems of the invention evaluate the available controls, generate a multi-dimensional space representing the combinations of controls, and analyze operational data to determine which points in the multidimensional space are permissible states for the controlled system. Optionally, some embodiments feature a user interface for manipulating or altering the constraints. The constrained multidimensional space is used in automated experimentation through selection of points in the multidimensional space for use in experimental trails.
Abstract:
The present invention is directed towards methods and systems for characterizing sensors and developing classifiers for sensor responses on a utility grid. Experiments are conducted by selectively varying utility grid parameters and observing the responses of utility grid to the variation. Methods and systems of this invention then associate the particular responses of the utility grid sensors with specific variations in the grid parameters, based on knowledge of the areas of space and periods of time where the variation in grid parameters may affect the sensor response. This associated data is then used to updating a model of grid response.
Abstract:
Systems and methods for organizing and controlling the display of content, then measuring the effectiveness of that content in modifying behavior, within a particular temporal and special dimension, so as to minimize or eliminate confounding effects.
Abstract:
At least some aspects of the present disclosure feature systems and methods for delivering content to a mobile device. In one embodiment, the system receives location information of the mobile device and determines a response duration. The system selects a content piece to deliver to the mobile device based on information regarding content comparisons or experimental units.