Abstract:
Various embodiments of an optical construction and an electronic device that includes such optical construction are disclosed. The optical construction includes a lens film having an outermost structured first major surface and an opposing outermost substantially planar second major surface. The structured first major surface includes a plurality of microlenses. The optical construction further includes a mask disposed adjacent to the second major surface of the lens film, where the mask includes a polymeric layer, a metal layer, and a plurality of laser-ablated openings disposed through the mask and aligned to the microlenses in a one-to-one correspondence.
Abstract:
A measurement system is disclosed and includes a light source, a receiver, a measurement subject, and a reflector. The reflector is disposed on an opposite side of the measurement subject than are the light source and the receiver.
Abstract:
An optical construction includes a lens film having an outermost structured first major surface and an opposing outermost substantially planar second major surface. The structured first major surface includes a plurality of microlenses. A solvent-deposited optically opaque mask layer is applied over the second major surface of the lens film. The mask layer has an average thickness of less than about 10 microns and defines a plurality of laser-ablated through openings therein. The through openings are aligned to the microlenses in a one-to-one correspondence, such that for a light incident on the structured first major surface along an incident direction forming an incident angle with the second major surface, an optical transmittance of the optical construction as a function of a transmitted angle includes a first transmitted peak having a first peak transmittance T1 ≥ 40%. The first transmitted peak can be within about 10 degrees of the incident angle.
Abstract:
An optical system includes a lens layer including a plurality of microlenses arranged along orthogonal first and second directions, and at least one optically opaque mask layer spaced apart from the lens layer and defining a plurality of through openings therein arranged along the first and second directions. There is a one-to-one correspondence between the microlenses and the openings, such that for each microlens, the microlens and corresponding openings are substantially centered on a straight line making a same oblique angle with the lens layer. An optical layer can include the lens layer and the optically opaque mask layer embedded in the optical layer.
Abstract:
An optical system (150) is disclosed and includes an optical sensor (154), a plurality of photosensitive pixels (178) disposed on the optical sensor, a wavelength-selective optical filter (158) in optical communication with the photosensitive pixels, the wavelength- selective optical filter being disposed remotely from the optical sensor, and a plurality of spatially-variant areas (220, 224, 228, 232) disposed in the optical filter, at least one area of the plurality of spatially-variant areas including a downconverter (400, 500).
Abstract:
Compounds having hindered amine and oxyalkyl amine light stabilizers can mitigate the adverse effects of actinic radiation, such as visible and ultraviolet light, on polymers and copolymers. Polymers and copolymers derived from such compounds. Articles, such as coated articles and molded articles, containing such polymers or compounds.
Abstract:
A barrier film that includes a substrate, a first polymer layer on a major surface of the substrate, an oxide layer on the first polymer layer, and a second polymer layer on the oxide layer. At least one of the first or second polymer layers includes a siloxane reaction product of a secondary or tertiary amino-functional silane having at least two silane groups. A method of making the barrier film and articles and a barrier assembly including the barrier film are also disclosed.
Abstract:
Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described. Methods of using such barrier films in articles selected from a solid state lighting device, a display device, and combinations thereof, are also described
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.