Abstract:
The present invention relates to an electrical apparatus having an insulating space which contains a dielectric insulation fluid comprising an organofluorine compound. At least one solid component of the apparatus that is directly exposed to the insulation fluid contains a basic body made of a first material and a protective layer made of a second material different from the first material, the protective layer being directly or indirectly applied on the basic body and having a thickness of at least 50 μm. The organofluorine compound is selected from the group consisting of: fluoroethers, fluoroketones, fluoroolefins, fluoronitriles, and mixtures thereof, and the first material comprises or consists of a material selected from the group consisting of: a polymeric material, a ceramic, a composite material, and mixtures or combinations thereof.
Abstract:
The present invention relates to an electrical apparatus having an insulating space which contains a dielectric insulation fluid comprising an organofluorine compound. At least one solid component of the apparatus that is directly exposed to the insulation fluid contains a basic body made of a first material and a protective layer made of a second material different from the first material, the protective layer being directly or indirectly applied on the basic body and having a thickness of at least 50 μm. The organofluorine compound is selected from the group consisting of: fluoroethers, fluoroketones, fluoroolefins, fluoronitriles, and mixtures thereof, and the first material comprises or consists of a material selected from the group consisting of: a polymeric material, a ceramic, a composite material, and mixtures or combinations thereof.
Abstract:
The present invention relates to an apparatus for the generation, the distribution or the usage of electrical energy, said apparatus comprising a housing enclosing an insulating space and an electrical component arranged in the insulating space. The insulating space contains a dielectric insulation gas comprising an organofluorine compound A. The apparatus further comprises a molecular sieve arranged such as to come into contact with the insulation gas. The molecular sieve has an average pore size y greater than the molecular size of at least one decomposition product of the organofluorine compound A generated during operation of the apparatus. The adsorption capability of the molecular sieve for organofluorine compound A is lower than for the at least one decomposition product. According to the invention, the apparatus further comprises at least one desiccant arranged such as to come into contact with the insulation gas.
Abstract:
A method and device for operating a fluid-insulated electrical apparatus (1) are disclosed. The insulation fluid (10) of the electrical apparatus (1) comprises at least two fluid components (A,B) which are a priori ingredients of the insulation fluid (10). The method comprises the step of carrying out at least one optical measurement and/or at least one gas chromatographic measurement on the insulation fluid (10). Using this measurement or these measurements or at least one additional measurement on the insulation fluid(10), a first concentration (cA) of the first fluid component (A) and a second concentration (c B ) of the second fluid component (B) are derived. Then, using the first concentration (c A ) and the second concentration (c B ), and, advantageously, a dielectric breakdown strength E bd of the insulation fluid (10), an operating state (O) of the electrical apparatus (1) is derived.