Abstract:
A method and apparatus for fast cell selection by a mobile wireless device. The mobile wireless device detects when a first wireless cell fails a set of stored suitability criteria and searches for and locates a set of candidate wireless cells to associate with. The mobile wireless device measures at least one received signal metric for each candidate wireless cell in the set of candidate wireless cells. When a candidate cell in the set of candidate wireless cells is identically the first wireless cell, the mobile wireless device evaluates the suitability of the candidate wireless cell using the stored set of suitability criteria for the first wireless cell and the measured at least one received signal metric for the candidate wireless cell. The mobile wireless communication device associates with the candidate wireless cell when the candidate wireless cell meets the stored set of suitability criteria.
Abstract:
A method for providing indication of an SRVCC handover is disclosed. The method can include a first wireless communication device participating in a voice call with a second wireless communication device via a connection between the first wireless communication device and a first network. The method can further include the first wireless communication device determining a condition indicative of an impending SRVCC handover of the first wireless communication device from the first network to a legacy network. In response to the condition, the method can additionally include the first wireless communication device formatting a message including an indication that the first wireless communication device is going to perform the SRVCC handover and sending the message to the second wireless communication device prior to performance of the SRVCC handover.
Abstract:
A jitter buffer in a Voice over LTE receiver may be influenced by radio level feedback (RLF) from both local and remote endpoints to preemptively adjust the jitter buffer delay in anticipation of predicted future losses that have a high probability of occurring. The radio events of the RLF and the scenarios that trigger the preemptive adjustments may be identified, and their use may be expressed in terms of mathematical formulas. In prior art designs, the instantaneous jitter is derived from a weighted history of the media stream, and consequently only packets that have already arrived are used to compute the instantaneous jitter to adjust the length of the buffer. By providing and using RLF from both local and remote endpoints, the anticipated delay—for packets that have not yet arrived—may be used to preemptively adjust the buffer, thereby minimizing packet loss without introducing unnecessary delay.
Abstract:
In video conferencing over a radio network, the radio equipment is a major power consumer especially in cellular networks such as LTE. In order to reduce the radio power consumption in video conferencing, it is important to introduce an enough radio inactive time. Several types of data buffering and bundling can be employed within a reasonable range of latency that doesn't significantly disrupt the real-time nature of video conferencing. In addition, the data transmission can be synchronized to the data reception in a controlled manner, which can result in an even longer radio inactive time and thus take advantage of radio power saving modes such as LTE C-DRX.
Abstract:
A method and apparatus for forced cell/RAT reselection is disclosed. In one embodiment, a cellular mobile communication device may attempt to access a network through a serving cell. Responsive to determining that access to the network is barred through the serving cell, the mobile communication device may determine if another cell is available through which it may obtain access to the network. If another cell providing network access is available, the mobile communication device may force reselection from the serving cell to the new cell. If no other cell providing access to the network is available to the mobile communication device, a forced reselection of a radio access technology may be performed.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for a user equipment device (UE) and/or cellular network to avoid invalidation of a subscriber identity module (SIM). A UE may initiate a connection with the network. The network may reject the connection attempt. The UE may selectively determine whether to invalidate the SIM, network, or both. The UE may consider various factors such as details of the connection rejection message, identity of the network, its relationship to the network (e.g., whether the network is a preferred network, etc.), a number of connection rejections received, time remaining on one or more timers, availability of other networks, etc.
Abstract:
A station that generates data packets to be transmitted by the station such that the data packets spend a minimum amount of time in a buffer prior to transmission. The method includes receiving a specification for a connected discontinuous reception (C-DRX) cycle, the specification indicating when a plurality of onDurations of the C-DRX cycle occurs, the onDurations having a predetermined interval therebetween, receiving data at a known time relative to the C-DRX cycle, determining a modification to a conversion process that converts the data to data packets such that the data packets are stored in a buffer at a subframe immediately preceding one of the onDurations subsequent to the known time, performing the conversion process based upon the modification and storing the data packets at the subframe immediately preceding the one of the onDurations. In one embodiment, the data is raw audio data and the data packets are audio packets.
Abstract:
A wireless voice call may be established between an originating user equipment (UE) and a terminating UE, via a cellular network, using preconditions. The originating UE may transmit an invitation for a packet-switched wireless voice call, beginning a first period of time. The terminating UE may cancel the invitation in response to determining that a first precondition, such as establishment of a dedicated bearer between the originating UE and the cellular network, is not satisfied within the first period of time. The first period of time may be interrupted in response to determining that the first precondition is satisfied, and a second period of time may then begin. The cellular network may cancel the invitation in response to determining that a second precondition, such as establishment of a dedicated bearer between the terminating UE and the cellular network, is not satisfied within the second period of time.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.