Abstract:
Exemplary semiconductor processing methods to clean a substrate processing chamber are described. The methods may include depositing a dielectric film on a first substrate in a substrate processing chamber, where the dielectric film may include a silicon-carbon-oxide. The first substrate having the dielectric film may be removed from the substrate processing chamber, and the dielectric film may be deposited on at least one more substrate in the substrate processing chamber. The at least one more substrate may be removed from the substrate processing chamber after the dielectric film is deposited on the substrate. Etch plasma effluents may flow into the substrate processing chamber after the removal of a last substrate having the dielectric film. The etch plasma effluents may include greater than or about 500 sccm of NF3 plasma effluents, and greater than or about 1000 sccm of O2 plasma effluents.
Abstract:
Embodiments described herein provide a method for sealing a porous low-k dielectric film. The method includes forming a sealing layer on the porous low-k dielectric film using a cyclic process. The cyclic process includes repeating a sequence of depositing a sealing layer on the porous low-k dielectric film and treating the sealing layer until the sealing layer achieves a predetermined thickness. The treating of each intermediate sealing layer generates more reactive sites on the surface of each intermediate sealing layer, which improves the quality of the resulting sealing layer.
Abstract:
Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. Embodiments described herein control selectivity of deposition by preventing damage to the dielectric surface, repairing damage to the dielectric surface, such as damage which can occur during the cobalt deposition process, and controlling deposition parameters for the cobalt layer.
Abstract:
Embodiments of the disclosure generally provide multi-layer dielectric stack configurations that are resistant to plasma damage. Methods are disclosed for the deposition of thin protective low dielectric constant layers upon bulk low dielectric constant layers to create the layer stack. As a result, the dielectric constant of the multi-layer stack is unchanged during and after plasma processing.
Abstract:
Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. Embodiments described herein control selectivity of deposition by preventing damage to the dielectric surface, repairing damage to the dielectric surface, such as damage which can occur during the cobalt deposition process, and controlling deposition parameters for the cobalt layer.
Abstract:
Embodiments of the present invention generally relate to methods for lowering the dielectric constant of low-k dielectric films used in semiconductor fabrication. In one embodiment, a method for lowering the dielectric constant (k) of a low-k silicon-containing dielectric film, comprising exposing a porous low-k silicon-containing dielectric film to a hydrofluoric acid solution and subsequently exposing the low-k silicon-containing dielectric film to a silylation agent. The silylation agent reacts with Si—OH functional groups in the porous low-k dielectric film to increase the concentration of carbon in the low-k dielectric film.