طريقة لانتاج نيتريلات غير مشبعه من الكانات

    公开(公告)号:SA2084B1

    公开(公告)日:2008-09-07

    申请号:SA02230243

    申请日:2002-08-11

    Applicant: BASF AG

    Abstract: الملخص: يتعلقالاختراعبطريقةلتحضيرنيترتيات nitrites غيرمشبعةمنالالكانات alkanes المناظرةوتتضمنعلىالخطواتالتالية.أ) شحنالكان alkane فيمنطقةلإزالةالهيدروجين dehydrogenation وإزالةالهيدروجينمنالالكان alkane بمساعدةحفازإلىالالكين alkene. المناظرللحصولعلىتيارغازناتج (أ) ذلكالناتجالذييشتملعلىالكين alkene والكان alkane غيرمحولومنالممكنمكونواحداواكثرمنالمكوناتالفانيةالمختارةمنالمجموعةالمتكونةمنبخارماء،هيدروجين hydrogen،اكاسيدكربون carbon oxides،هيدروكربونات hydrocarbons لهادرجةغلياناقلمنالالكان alkane اوالالكين alkene (غلاياتمنخفضة)،نيتروجين nihogen،غازاتنفسية. ب) إزالةعلىالأقللمكوناتغازيةأخرىمنتيارالغازالناتج (أ) لإعطاءتيارغازللشحنة (ب) الذييتضمنعلىالكان alkane والكين alkene.ج) شحنتيارغازالشحنة (ب)،امونيا ammonia،غازمحتويعلىاكسجين oxygen و - إذاأريد - بخارماءوذلكإلىداخلمنطقةاكسدةو القيامبعمليةاموكسيدية ammoxidizing بطريقةحفازةللالكين alkene إلىالنيتريل nitrile الغيرمشبعالمناظرلاعطاءتيارغازالناتج (ج) الذييشتملعلىنيتريل nihile غيرمشبع،ثمعمليةالأموكسيدية ammoxidizing للنواتجالثانوية،والالكان alkane الغيرمحولوالالكين alkene ومنالممكنواحداوأكثرمنالمكوناتالفانيةالأخرىالمختارةمنالمجموعةالمتكونةمنبخارماء،اكسجين oxygen،اكاسيد- كربون carbon oxides،امونيا ammonia،نيتروجين nitrogen وغازاتنفيسة. د) اختيارياإزالةالأمونيا ammonia منتيارغازالناتج (ج) لإعطاءتيارغازناتجمنزوعالأمونيا ammonia(د).د) إزالةالنيتريل nitrile الغيرمشبعواموكسيدية ammoxidizing النواتجالثانويةمنتيارغازالناتج (ج) أو (د) بواسطةالامتصاصفيعاهلامتصاصمائيلإعطاءتيارغاز (ه) يتضمنعلىالكان alkane غيرمحولوألكين alkene ومنالممكنواحداواكثرمنالمكوناتالغازيةالمختارةمنالمجموعةالمتكونةمناكسجين oxygen،اكاسيدالكربون carbon oxides،الأمونيا ammonia،النيتروجين nitrogen،والغازاتالنفيسة،تيارمائييشتملعننيتريل nitrile غيرمشبع ,ونواتجثانوية،و استخلاصالنيتريل niteile الغيرمشبعمنالتيارالمائي،و) إعادةدورةتيارالغاز (ه) إلىمنطقةإزالةالهيدروجين dehydrogenation.

    25.
    发明专利
    未知

    公开(公告)号:DE102004059356A1

    公开(公告)日:2006-06-14

    申请号:DE102004059356

    申请日:2004-12-09

    Applicant: BASF AG

    Abstract: A process for preparing butadiene, comprising nonoxidatively dehydrogenating n-butane from a stream (a) in a first dehydrogenation zone to obtain stream (b) comprising 1-butene and 2-butene; oxidatively dehydrogenating the 1-butene and 2-butene of (b) in the presence of an oxygenous gas in a second dehydrogenation zone to obtain stream (c) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; compressing and cooling (c) to obtain stream (d2) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; extractively distilling (d2) into stream (e1) comprising butadiene and stream (e2) comprising n-butane, hydrogen, carbon dioxide, and steam; compressing and cooling (e2) to obtain stream (f1) comprising n-butane and water and stream (f2) comprising n-butane, hydrogen, and carbon dioxide; cooling (f2) to obtain stream (g1) comprising n-butane and stream (g2) comprising carbon dioxide and hydrogen; phase separating water from (f1) to obtain stream (h1) comprising n-butane; and recycling (h1) into the first dehydrogenation zone.

    Preparation of (meth)acrylic acid useful for preparation of polymers involves heterogeneously catalyzed gas phase partial oxidation of saturated hydrocarbon precursor at elevated temperature over catalyst beds

    公开(公告)号:DE10344264A1

    公开(公告)日:2005-04-21

    申请号:DE10344264

    申请日:2003-09-23

    Applicant: BASF AG

    Abstract: Preparation of (meth)acrylic acid involves heterogeneously catalyzed gas phase partial oxidation of at least one saturated hydrocarbon precursor compound (C1) at elevated temperature by conducting a starting reaction gas mixture comprising (C1), molecular oxygen, and at least one inert gas through at least one catalyst bed (I). The oxidation reaction in catalyst bed (I) is interrupted at least once by continuing in a catalyst bed (II). Preparation of (meth)acrylic acid involves heterogeneously catalyzed gas phase partial oxidation of at least one saturated hydrocarbon precursor compound (C1) at elevated temperature by conducting a starting reaction gas mixture comprising (C1), molecular oxygen, and at least one inert gas through at least one catalyst bed (I), whose catalysts (I) have active composition containing at least one multimetal oxide (I) which contains the elements Mo and V, at least one element from Te and Sb, and at least one element selected from Nb, Ta, W, Ce or Ti; and whose X-ray diffractogram (I) is as given in the specification. The gas phase partial oxidation of the reaction gas mixture over the catalysts (I) in at least one catalyst bed (I) is interrupted at least once by continuing the gas phase partial oxidation in at least one catalyst bed (II), whose catalysts (II) have their active composition containing at least one multimetal oxide (II), and whose X-ray diffractogram (II) is different from the X-ray diffractogram (I) and has a stoichiometry of general formula: Mo12BiaFeb(X1>)c(X2>)d(X3>)e(X4>)fOn, (A); or a general formula: [(Y1>)a'(Y2>)b'Ox]p[(Y3>)c'(Y4>)d'(Y5>)e'(Y6>)f'(Y7>)g'(Y2>)h'Oy]q, (B). X1>nickel and/or cobalt; X2>thallium, alkali metal and/or alkaline earth metal; X3>zinc, phosphorus, arsenic, boron, antimony, tin, cerium, lead and/or tungsten; X4>silicon, aluminum, titanium and/or zirconium; a : 0.2 - 5; b : 0.01 - 5; c and f : 0 - 10; d : 0 - 2; e : 0 - 8; n : number determined by the valency and frequency of the elements in formula (A) other than oxygen; Y1>only bismuth or bismuth and at least one of tellurium, antimony, tin or copper; Y2>molybdenum and/or tungsten; Y3>alkali metal, thallium and/or samarium; Y4>alkaline earth metal, nickel, cobalt, copper, manganese, zinc, tin, cadmium and/or mercury; Y5>iron, or iron and at least one element from vanadium, chromium, and cerium; Y6>phosphorus, arsenic, boron and/or antimony; Y7>a rare earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, germanium, lead, thorium and/or uranium; a' : 0.01 - 8; b' : 0.1 - 30; c' : 0 - 4; d' : 0 - 20; e' : greater than 0 - 20; f' : 0 - 6; g' : 0 - 15; h' : 8 - 16; x and y : numbers determined by the valency and frequency of the elements other than oxygen in formula (B); and p and q : numbers whose p/q ratio is 0.1 - 10.

    (Meth)acrylic acid production in high yield, for use as monomer, by gas-phase oxidation of saturated hydrocarbon precursor(s) over two beds of mixed metal oxide catalysts with specific selectivity properties

    公开(公告)号:DE10344265A1

    公开(公告)日:2004-10-28

    申请号:DE10344265

    申请日:2003-09-23

    Applicant: BASF AG

    Abstract: In the production of (meth)acrylic acid ((M)AA) by passing a gaseous mixture of saturated hydrocarbon precursor(s) (SHP's), oxygen and inert gas through a reactor charged with a mixed metal oxide catalyst (M) containing molybdenum and vanadium, (M) is contained in two beds (I) and (II) of different composition, spaced in the flow direction, having specific selectivity properties on increasing the temperature. Production of (meth)acrylic acid ((M)AA) by heterogeneous gas-phase oxidation at elevated temperature involves passing a gaseous mixture of saturated hydrocarbon precursor(s) (SHP's), oxygen and inert gas(es) at initial pressure P through a reactor charged with a catalyst comprising (as active mass) a mixed metal oxide (M) containing molybdenum and vanadium, at least one of tellurium, antimony and bismuth and at least one of niobium, tantalum, tungsten, cerium and titanium and having an X-ray diffractogram peaks at 2tau values of 22.2 +- 0.5[deg] (h) (strongest peak; half-value breadth at most 0.5[deg]), 27.3 +- 0.5[deg] (i) (half-value breadth 1.0[deg] or less) and 28.2 +- 0.5[deg] (k) (half-value breadth 1.0[deg] or less). The novel feature is that the whole of (M) is contained in two beds (I) and (II) of different composition, spaced in the flow direction. Beds (I) and (II) are such that if the particular bed was the only catalyst present in the same reactor the respective selectivities S1> and S2> for (M)AA would have maximum values (on increasing the conversion of SHP's by increasing the temperature under otherwise identical conditions on a single pass of gas through the reactor) of S1>max and S2>max respectively, where S1>max occurs at lower SHP conversion than S2>max and at an increasing SHP conversion S1> is less than S2>, whereas S1>max is more than S2>max.

Patent Agency Ranking