Abstract:
Technologies are described for applying electrical energy according to a physical extent of a combustion reaction, which may include: supporting a combustion reaction at a fuel source; sensing a physical extent of the combustion reaction with respect to a plurality of different locations of a plurality of electrodes; and applying electrical energy to the combustion reaction via at least one of the plurality of electrodes responsive to the physical extent of the combustion reaction. Sensing the physical extent of the combustion reaction may include receiving a sensor signal corresponding to the physical extent of the combustion reaction.
Abstract:
A combustor may include a nonmetallic combustor body configured to hold a combustion reaction and one or more electrodes disposed outside the nonmetallic combustor body and configured to apply an electric field, an electric field effect, charged particles, or voltage to the combustion reaction.
Abstract:
An electrically stabilized burner is configured to support a combustion reaction such as a combustion reaction substantially at a selected fuel dilution and with a mixing rate selected to maximize the reaction rate without quenching the combustion reaction.
Abstract:
A perforated flame holder and burner including a perforated flame holder provides reduced oxides of nitrogen (NOx) during operation. The perforated flame holder includes a pattern of elongated apertures extending between a proximal and a distal surface of the flame holder relative to a fuel nozzle. The perforated flame holder can provide a significantly reduced flame height while maintaining heat output from the burner.
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.
Abstract:
A multijet burner system includes a plurality of fuel nozzles, each configured to support a respective flame, a plurality of charge electrodes, each positioned and configured to apply a charge potential to a fluid flow corresponding to a respective one of the plurality of fuel nozzles, and a charge controller operatively coupled to each of the plurality of charge electrodes and configured to control a voltage potential applied to each respective charge electrode. By selecting the magnitude and polarity of a charge potential applied to individual ones of the flames of the plurality of burners, the flames can be made to change positions, move to selected positions, and redistribute themselves within a volume.
Abstract:
An charge element disposed proximate to a combustion reaction is caused to carry a voltage while also being prevented from arc-discharging or arc-charging to or from the combustion reaction, by a current limiting element in electrical continuity with the charge element.
Abstract:
A horizontally-fired flame burner includes a flame holder positioned laterally from the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
A down-fired flame burner includes a flame holder positioned below the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
A perforated flame holder and burner including a perforated flame holder provides reduced oxides of nitrogen (NOx) during operation. The perforated flame holder includes a pattern of elongated apertures extending between a proximal and a distal surface of the flame holder relative to a fuel nozzle. The perforated flame holder can provide a significantly reduced flame height while maintaining heat output from the burner.