Abstract:
A horizontally-fired flame burner includes a flame holder positioned laterally from the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
Technologies are provided for applying energy to a combustion reaction. For example, a method may include supporting a combustion reaction; applying energy to the combustion reaction via one or more control signals; detecting a change in one or more parameters associated with the combustion reaction; comparing the change in the one or more parameters to a database; determining whether the change in the one or more parameters corresponds to a change in the combustion reaction; selecting a change in the one or more control signals from the database; and applying the change in the one or more control signals to change the a value of the energy applied to the combustion reaction responsive to changes in the one or more parameters associated with in the combustion reaction.
Abstract:
A premixed combustion system includes a charge electrode, and an anchoring electrode positioned adjacent to a fuel nozzle. A charge having a first polarity is applied to the flame via the charge electrode and an electrical potential having a polarity opposite the first polarity is applied to the anchoring electrode. The oppositely-charged flame is attracted to the anchoring electrode, thereby anchoring the flame.
Abstract:
A burner supporting primary and secondary combustion reactions may include a primary combustion reaction actuator configured to select a location of the secondary combustion reaction. A burner may include a lifted flame holder structure configured to support a secondary combustion reaction above a partial premixing region. The secondary flame support location may be selected as a function of a turndown parameter. Selection logic may be of arbitrary complexity.
Abstract:
Two or more unipolar voltage generation systems may apply respective voltages to separate but complementary electrodes. The complementary electrodes may be disposed substantially congruently or analogously to one another to provide bipolar electrical effects on a combustion reaction.
Abstract:
Nitrogen oxides (NOx) generated by a fuel burner is reduced by anchoring the flame to a conductive anchor disposed a lift distance from a fuel nozzle, using a voltage applied to the flame.
Abstract:
A combustion system includes a perforated flame holder that includes a plurality of perforations and substantially contains a combustion reaction within the perforations. The system further includes one or more electrodes coupled to the perforated flame holder and configured to electrically influence the combustion reaction within the perforations.
Abstract:
An electrically enhanced combustor includes bilayer insulation. A thermal insulator protects an electrical insulator from high temperatures that could cause the electrical insulator to become at least somewhat electrically conductive.
Abstract:
A high voltage can be applied to a combustion reaction to enhance or otherwise control the combustion reaction. The high voltage is switched on or off by a grid electrode interposed between a high voltage electrode assembly and the combustion reaction.
Abstract:
A corona electrode may be used to apply an electric field to a combustion reaction to cause a response in the combustion reaction. The corona electrode may include an ion-ejecting feature having a small radius.