Abstract:
A semiconductor laser having an external cavity including a single-mode optical fiber (40). A Bragg grating (42) is written onto the fiber (40) which defines the end of the optical cavity, selects the lasing wavelength, and discriminates against the lasing of higher-order transverse modes in the multi-mode gain region. The system includes an optically active medium (28) with a mirror (22) attached to a first end, and optics (26) for coupling the multi-mode output from the second end of the active medium into the single-mode fiber (40). The active medium may be optically pumped (32) and may comprise a solid state laser rod or a semiconductor diode.
Abstract:
Video display screens for "video off" illumination comprise an imaging display panel, a cover glass sheet for the display panel, and a light source for injecting light into the cover glass sheet, wherein at least a portion of the cover glass sheet is provided with at least one light-scattering bulk or surface element effective to scatter a portion of the light at an angle normal to plane of the cover glass sheet, for front surface illumination, or to scatter a portion of the light into the plane of the sheet, for sheet border or edge illumination.
Abstract:
A laser system comprising (i) a pulsed light source (102) generating a pulsed light having an optical spectrum centered at a source wavelength, (ii) a Raman conversion fiber (106) coupled the pulsed light source, wherein the pulsed light traverses the nonlinear Raman conversion fiber and is converted by a cascaded Stimulated Raman Scattering process into a first pulsed light output corresponding to last Stokes order and having an optical spectrum centered at a first output wavelength which is longer than the source wavelength, and (iii) a harmonic generator (110) operatively coupled to said a Raman conversion fiber to accept the first pulsed light output order and to convert it to longer optical frequency such that said harmonic generator producing light output in the final output wavelength situated in the 150-775 nm range.
Abstract:
According to one example of the invention an optical fiber comprises: (i) silica based, rare earth doped core having a first index of refraction n1; (ii) at least one silica based cladding surrounding the core and having a second index of refraction n2, such that n1> n2 with the following features, alone or in combination: said cladding includes 0.5 to 5 wt% F and 0.5 to 20 wt% B, said optical fiber has less than 8dB/km core background loss at a wavelength of 1280 nm. at least one of the core or cladding is doped with AI203 concentration is less than 2:1.
Abstract:
An optically active linear single polarization device includes a linearly birefringent and linearly dichroic optical waveguide (30) for propagating light and having single polarization wavelength range (48). A plurality of active dopants are disposed in a portion (34) of the linearly birefringent and linearly dichroic optical waveguide (30) for providing operation of the waveguide in an operating wavelength range (650) for overlapping the single polarization wavelength range (48).
Abstract:
An optical waveguide fiber having a high threshold for stimulated Brillouin scattering. According to some embodiments of the invention, the optical fiber comprises: (a) a rare earth doped core having a refractive index profile and a centerline, the core including at least two adjacent core regions including different amounts of updopants, such that the longitudinal acoustic field velocities within the two core regions differ by at least 0.2%; and (b) a cladding layer surrounding and directly adjacent the core. The said fiber has MFD of greater than 12 mum and delta % difference between the peak core delta and the cladding of less than 0.3%.
Abstract:
The present invention relates to fiber bundles and methods for making fiber bundles. According to one embodiment of the invention, at the endface of the fused fiber bundle, the ratio of the cross-sectional area of the endface to the cross sectional area of the plurality of optical fibers is at least about 2.5. According to another embodiment of the invention, a fused fiber bundle includes a plurality of optical fibers, and a glass tube surrounding the terminal segments of the optical fibers, wherein the refractive index of the glass tube is less than the refractive index of the claddings of the optical fibers. Other embodiments of the present invention provide methods for making fused bundles.
Abstract:
An optical system comprises an optical fiber with gain producing core with an index of refraction n1, surrounded by at least one cladding with an index of refraction n2, said cladding including at least one index reduced area with an index of refraction n2, such that n1>n2>n2, the core propagating signal at a spatial fundamental mode at a signal wavelength λ1 and at a power level sufficient to generate optical power at a wavelength λ2, where λ2> λ1 , and the optical fiber has at least one cut-off fundamental spatial mode wavelength λc, and λ1 λc.
Abstract:
An optically active waveguide laser 30 includes a multimode portion 126 for carrying more than one spatial mode at a predetermined wavelength chosen from a bandwidth including a pump wavelength 64 and the lasing wavelength 66. The multimode portion 126 has a first refractive index. A cladding portion 386 is proximate the multimode portion 126. A multimode grating 60, 56, or 62 is written on at least one section 26 of the multimode portion for reflecting the predetermined wavelength.