Abstract:
PROBLEM TO BE SOLVED: To improve the strength of the edge of a glass sheet which is cut as it is after the glass sheet is formed and to shorten or eliminate traditionally costly edge-finishing process and equipment. SOLUTION: A glass sheet assembly 100 is provided with: a glass sheet 106 having an edge surface 104; and an edge protection member 102 having a first surface bonded to the edge surface 104 of the glass sheet 106 and a convex second surface which is not bonded to the edge surface 104 but used for receiving a load. The convex second surface of the edge protection member 102 receives the impact load imposed toward the edge surface 104 of the glass sheet 106 and diffuses the received impact load to increase the impact strength of the bonded edge surface 104. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A method for screening fiber polarization mode dispersion using a polarization optical time domain reflectometer. A pulse radiation is emitted into the fiber under test, and the backscattered radiation is measured by the POTDR and used to obtain a POTDR trace. The POTDR trace is then analyzed to compare the variation of signals along the length of the fiber, the variation in signals relating to the level of PMD along the length of the fiber. Because high levels of PMD correspond to localized levels of low variability, by setting the variability of signal threshold sufficiently low, fibers having unacceptably high localized PMD can be identified and removed.
Abstract:
An optical fiber (10), comprising: (i) a rare earth doped silica based elongated core (12) with a first refractive index (n1 with an aspect ratio of 1.5 to 10; (ii) a silica based moat (13) abutting and at least substantially surrounding the core, the moat having a refractive index n2, wherein n21; (iii) a silica based inner cladding (14) surrounding the moat, the inner cladding having a third refractive index (n3), wherein n1>n3; and n3>n2; (iv) a silica based outer cladding (16) surrounding said inner cladding, the outer cladding having a fourth refractive index (n4), such that n43; the optical fiber exhibits single polarization at the operating wavelength band.
Abstract:
An optical fiber comprising: a glass core extending from a centerline to a radius R 1 ; a glass cladding surrounding and in contact with the core, the cladding comprising: a first annular region extending from R 1 to a radius R 2 , the first annular region comprising a radial width, W 2 = R 2 - R 1 , a second annular region extending from R 2 to a radius R 3 , the second annular region comprising a radial width, W 3 = R 3 - R 2 , and a third annular region extending from R 3 to an outermost glass radius R 4 ; wherein (i) the core comprises a maximum relative refractive index, ? 1
Abstract:
A method for measuring longitudinal variation in chromatic dispersion in an optical fiber, comprising: (i) launching into a first end and a second end of optical fiber an optical signal at a wavelength ?1 to collect backscatter power P(z) for different positions z within said optical fiber and providing measured OTDR backscatter traces; (ii) deriving from the measured OTDR backscatter traces at the single OTDR wavelength ?1 either (a) the longitudinal MFD(z) data or (b) the relative MFD data; and (iii) calculating estimated longitudinal dispersion D(z) from the longitudinal MFD(z) data or the relative MFD data, without utilizing any other wavelength data.
Abstract:
Multimode optical fiber systems with adjustable chromatic modal dispersion compensation are disclosed, wherein the system includes a VCSEL light source and primary and secondary optically coupled multimode optical fibers. Because the VCSEL light source has a wavelength spectrum that radially varies, its use with the primary multimode optical fiber creates chromatic modal dispersion that reduces bandwidth. The compensating multimode optical fiber is designed to have a difference in alpha parameter relative to the primary multimode optical fiber of -0.1
Abstract:
A method for making low PMD fiber comprising the steps of: (i) making an initial fiber preform; (ii) modifying said initial fiber preform to introduce higher birefringence than that of the initial fiber preform into modified preform; and (iii) drawing an optical fiber from the modified preform and bi-directionally spinning the drawn fiber during draw.
Abstract:
An optical fiber comprising a core having a refractive index profile and a centerline; and a cladding layer surrounding and directly adjacent the core; wherein core includes updoping material and is doped with Aluminum in at least one region of the core, such that either: (a) the average longitudinal acoustic wave velocity within the core is within 0.05% of the longitudinal acoustic wave velocity within the cladding; or (b) the longitudinal acoustic wave velocity in the core changes by at least 0.2%.
Abstract:
A method for producing low-PMD fiber, in which a glass fiber is drawn from an optical fiber perform by a tractor which pulls such optical fiber from said perform; subsequent to said tractor pulling the fiber is twisted about its axis to increase the magnitude of twist which is imparted to said fiber. The fiber is then wound onto a fiber storage spool such that at least a portion of the twist imparted to said optical fiber is retained while said fiber is wound on said spool.