Abstract:
One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ ) 0.209748 T dop Exp [ - 5435.33 / T dop ] y SiCl 4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.
Abstract translation:本公开的一个实施方案涉及一种制造光纤的方法,包括以下步骤:(i)将二氧化硅基预型体暴露于具有烟炱密度的至少一个多孔玻璃区域; 涉及在掺杂温度Tdop下包括具有SiCl 4摩尔分数ySiCl 4的SiCl 4的气体混合物,使得参数X大于0.03以形成经氯处理的预成型体,其中X = 11 + [(&rgr; s - &rgr;)0.209748 T dop Exp] [ - 5435.33 / T dop] y SiClü务4 3/4]和&rgr; s是完全致密的烟灰层的密度; 和(ii)将氯处理的预制件暴露于高于1400℃的温度下,以完全烧结预成型件,以制备具有氯掺杂区域的烧结光纤预制件; 和(iii)从烧结的光学预型件拉制光纤。
Abstract:
An optical fiber having both low bend loss. The fiber has a central core region having refractive index Δ1, an inner cladding region having an outer radius r2>17 microns and refractive index Δ2 and a second cladding region surrounding the inner cladding region having refractive index Δ3. The fiber profile segments may be arranged so that Δ1>Δ3>Δ2. The fiber may exhibit a profile volume, V2 of the inner cladding region, calculated between r1 and r2, is at least 30% Δmicron2.
Abstract:
The present disclosure provides low-diameter optical fibers with intermediate effective area at 1550 nm that exhibit low macrobend loss at 1550 nm at bend diameters of 32 mm and 50 mm, low microbend loss at 1550 nm, and low attenuation at 1550 nm. The optical fibers are coated and have an outer coating diameter less than 210 μm. The optical fibers feature a cladding with a trench cladding region having a trench volume less than 20% μm2.
Abstract:
A multicore optical fiber is provided that includes a first core with silica glass doped with chlorine and/or an alkali metal, a first inner cladding surrounding the first core, and a first outer cladding surrounding the first inner cladding and having a first trench region having a volume of about 30%Δ-micron2 or greater. The multicore optical fiber also includes a second core with silica glass doped with chlorine and/or an alkali metal, a second inner cladding surrounding the second core, and a second outer cladding surrounding the second inner cladding and having a second trench region having a volume of about 30%Δ-micron2 or greater. Additionally, a common cladding surrounds the first core and the second core, and the first core and the second core each have an effective area at 1550 nm of about 100 micron2 or less.
Abstract:
A multicore optical fiber comprises a common cladding and a plurality of core portions disposed in the common cladding. Each of the core portions includes a central axis, a core region extending from the central axis to a radius r1, the core region comprising a relative refractive index Δ1, an inner cladding region extending from the radius r1 to a radius r2, the inner cladding region comprising a relative refractive index Δ2, and a depressed cladding extending from the radius r2 to a radius r3, the depressed cladding region comprising a relative refractive index Δ3 and a minimum relative refractive index Δ3 min. The relative refractive indexes may satisfy Δ1>Δ2>Δ3 min. The mode field diameter of each core portion may greater than or equal to 8.2 μm and less than or equal to 9.5 μm.
Abstract:
A single mode optical fiber is provided that includes a core region having an outer radius r1 and a maximum relative refractive index Δ1max. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, has a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.002 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength and a cable cutoff of less than or equal to about 1260 nm.
Abstract:
Optical fibers having a large effective area and a low cutoff wavelength are disclosed. Three main embodiments of the optical fiber allow for single-mode operation at wavelengths greater than 980 nm, and have a large effective area with low bend losses and low dispersion at 1310 nm. The large effective area optical fiber is expected to be particularly useful for data center applications due to its ability to efficiently optically couple with VCSELs and photonic integrated devices. Integrated systems and optical communication systems that employ the optical fibers are also disclosed.
Abstract:
A multicore optical fiber comprises a common cladding and a plurality of core portions disposed in the common cladding. Each of the core portions includes a central axis, a core region extending from the central axis to a radius r1, the core region comprising a relative refractive index Δ1, an inner cladding region extending from the radius r1 to a radius r2, the inner cladding region comprising a relative refractive index Δ2, and a depressed cladding extending from the radius r2 to a radius r3, the depressed cladding region comprising a relative refractive index Δ3 and a minimum relative refractive index Δ3 min. The relative refractive indexes may satisfy Δ1>Δ2>Δ3 min. The mode field diameter of each core portion may greater than or equal to 8.2 μm and less than or equal to 9.5 μm.
Abstract:
An optical fiber includes (i) a chlorine doped silica based core having a core alpha (Coreα)≥4, a radius r1, and a maximum refractive index delta Δ1max % and (ii) a cladding surrounding the core. The cladding surrounding the core includes a) a first inner cladding region adjacent to and in contact with the core and having a refractive index delta Δ2, a radius r2, and a minimum refractive index delta Δ2min such that Δ2min
Abstract:
A single mode optical fiber, comprising: (i) a silica based core having a step refractive index profile with an alpha of greater than 10, a relative refractive index Δ1MAX, and an outer radius r1, wherein 6.25 microns>r1≥4.75 microns, the core further comprising Cl, Ge, or a combination thereof; (ii) a first cladding region in contact with and surrounding the core, the first cladding region having a relative refractive index Δ2MIN, an inner radius r1, and an outer radius r2, wherein r2