Abstract:
A spark plug 1 includes a tubular housing 2, a tubular insulator 3 held inside the housing 2, a center electrode 4 held inside the insulator 3 such that a distal end portion 41 protrudes, a ground electrode 5 that forms a spark discharge gap G between it and the center electrode 4, and a standing member 6 that stands distalward from a distal end portion 21 of the housing 2. In at least one of a pair of side surfaces 61 of the standing member 6 which face in a plug circumferential direction, there is formed a guide step portion 62 for guiding the flow of an air-fuel mixture in a combustion chamber of an internal combustion engine to the spark discharge gap G.
Abstract:
A spark plug includes a tubular housing, a tubular insulator retained in the housing, a center electrode secured in the insulator with a distal end portion of the center electrode protruding outside the insulator, and an annular ground electrode fixed to a distal end of the housing. The housing has, at the distal end thereof, a small-inner diameter portion that has a smaller inner diameter than other portions of the housing. The annular ground electrode is arranged on a distal end surface of the small-inner diameter portion of the housing so that an inner circumferential surface of the ground electrode faces an outer circumferential surface of the distal end portion of the center electrode through a spark gap formed therebetween. The outer diameter of the ground electrode is less than the outer diameter of the distal end surface of the small-inner diameter portion of the housing.
Abstract:
It is possible to adjust electromagnetic energy introduced from a low-voltage side of a primary winding 20 of an ignition coil 2 after start discharging to a spark plug 1 from the ignition coil 2 in the correct proportion by threshold-determining either one or both of a primary voltage V1 applied to a primary side of the ignition coil 2 and a secondary current I2 flowing in a secondary side of the ignition coil 2, and by opening and closing a discharging switch 32 disposed between an auxiliary power supply 3 including an energy storage coil 330 and a low-voltage side terminal 201 of the ignition coil 2.
Abstract:
An alternating current generation system is provided. In the system, in a rotor, a plurality of detection subject portions are arrayed along a circumferential direction in correspondence to reversal states of the magnetic poles in a plurality of magnetized portions. A detecting unit is disposed opposing the rotor so as to generate an output signal corresponding to passage state of the detection subject portions. A phase control unit outputs, to a power converter, a control signal to perform phase control of switching elements depending on the rotation phase of the rotor, based on the output signal from the detecting unit.
Abstract:
An ignition coil for an internal combustion engine includes a primary bobbin including a winding cylinder part and a connection part between the winding cylinder part and a connector part, a primary coil including a primary main coil and a primary sub coil, and a secondary coil. When one of the primary main coil and the primary sub coil that includes an innermost coil part around the winding cylinder part is defined as a firstly-wound coil and the other is defined as a secondly-wound coil, firstly-wound ends, which are ends of the firstly-wound coil, and secondly-wound ends, which are ends of the secondly-wound coil, are attached to the connection part, and a shortest distance from a central axis of the winding cylinder part to each of the firstly-wound ends is smaller than a shortest distance from the central axis of the winding cylinder part to each of the secondly-wound ends.
Abstract:
An ignition coil for an internal combustion engine includes a primary bobbin including a winding cylinder part and a connection part between the winding cylinder part and a connector part, a primary coil including a primary main coil and a primary sub coil, and a secondary coil. When one of the primary main coil and the primary sub coil that includes an innermost coil part around the winding cylinder part is defined as a firstly-wound coil and the other is defined as a secondly-wound coil, firstly-wound ends, which are ends of the firstly-wound coil, and secondly-wound ends, which are ends of the secondly-wound coil, are attached to the connection part, and a shortest distance from a central axis of the winding cylinder part to each of the firstly-wound ends is smaller than a shortest distance from the central axis of the winding cylinder part to each of the secondly-wound ends.
Abstract:
An ignition control system for an internal combustion engine includes a controller, which includes an IGT generating section and an IGW generating section and is connected to ignition devices through an IGT signal line and an IGW signal line. The IGW signal line includes bifurcated portions, which sequentially bifurcate from a common main signal line. The bifurcated portions each correspond to one of the ignition devices and include a branched line, which is connected to an energy supply circuit inside the corresponding ignition device.
Abstract:
In an ignition control device for an internal-combustion engine, signal separation circuitry receives and separates an ignition control signal that is an integrated signal of a main ignition signal for controlling the main ignition operation, an energy input signal for controlling the energy input operation, and a target secondary current command signal. The ignition control signal is formed of a first signal and a second signal that are pulsed signals. The signal separation circuitry is configured to generate, from the ignition control signal, the main ignition signal based on rising edges of the first signal and the second signal as pulse-waveform information of the first signal and the second signal, generate the energy input signal based on a pulse width of the second signal as pulse-waveform information of the second signal, and generate the target secondary current command signal based on pulse-waveform information of the first signal.
Abstract:
A spark plug has a housing, an insulator, a central electrode and a ground electrode. At least one projection part is formed on an outer peripheral surface of the insulator at a location facing a distal end cylindrical surface of the insulator in a radial direction of the spark plug so that at least one projection part has a minimum distance measured from a plug central axis of the spark plug, which is longer than a distance of another part of the insulator measured from the plug central axis. On a cross section of the spark plug, at least one projection part is formed on the outer peripheral surface of the insulator in a direction between at least one projection part and the plug central axis which crosses to a direction between a rod-shaped part and the plug central axis.
Abstract:
A center electrode is held in insulating glass, in which a tip end portion of the center electrode protrudes. A ground electrode has a connection part connected to a housing. The ground electrode forms a spark discharge gap between the center electrode and the ground electrode. The ground electrode has a ground base material that includes the connection part and a ground protrusion part that protrudes from the ground base material toward the center electrode and forms the spark discharge gap between the center electrode and the ground electrode. An angle between a ground discharge surface of the ground protrusion part and a side surface of the ground protrusion part is a right angle or an acute angle. At least a portion of the side surface of the ground protrusion part and at least a portion of a side surface of the ground base material are flush with each other.