Thermal management solutions for integrated circuit packages

    公开(公告)号:US11482471B2

    公开(公告)日:2022-10-25

    申请号:US16287728

    申请日:2019-02-27

    Abstract: An integrated circuit package may be formed having a heat transfer fluid chamber, wherein the heat transfer fluid chamber may be positioned to allow a heat transfer fluid to directly contact an integrated circuit device within the integrated circuit package. In one embodiment, a first surface of the integrated circuit device may be electrically attached to a first substrate. The first substrate may then may be electrically attached to a second substrate, such that the integrated circuit device is between the first substrate and the second substrate. The second substrate may include a cavity, wherein the heat transfer fluid chamber may be formed between a second surface of the integrated circuit device and the cavity of the second substrate. Thus, at least a portion of a second surface of the integrated circuit device is exposed to the heat transfer fluid which flows into the heat transfer fluid chamber.

    Semiconductor package substrate with through-hole magnetic core inductor using conductive paste

    公开(公告)号:US10790159B2

    公开(公告)日:2020-09-29

    申请号:US15920881

    申请日:2018-03-14

    Abstract: The systems and methods described herein provide for the fabrication of semiconductor package substrates having magnetic inductors formed in at least a portion of the through-holes formed in the semiconductor package substrate. Such magnetic inductors are formed without exposing the magnetic material disposed in the through-hole to any wet chemistry (desmear, electro-less plating, etc.) processes by sealing the magnetic material with a patterned sealant (e.g., patterned dry film resist) which seals the magnetic material prior to performing steps involving wet chemistry on the semiconductor package substrate. Such beneficially minimizes or even eliminates the contamination of wet chemistry reagents by the magnetic material should the magnetic material remain exposed during the wet chemistry processes. The patterned sealant is removed subsequent to the semiconductor package processing steps involving wet chemistry.

    MICROELECTRONIC ASSEMBLIES HAVING A COOLING CHANNEL

    公开(公告)号:US20200211927A1

    公开(公告)日:2020-07-02

    申请号:US16233808

    申请日:2018-12-27

    Abstract: Microelectronic assemblies that include a cooling channel, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a surface, a die having a surface, and a fluidic channel between the surface of the die and the surface of the package substrate, wherein a top surface of the fluidic channel is defined by the surface of the die and a bottom surface of the fluidic channel is defined by the surface of the package substrate. In some embodiments, a microelectronic assembly may include a package substrate having a surface; a die having a surface; and an interposer having a fluidic channel between the surface of the die and the surface of the package substrate.

    Microelectronic assemblies having a cooling channel

    公开(公告)号:US11521914B2

    公开(公告)日:2022-12-06

    申请号:US16233808

    申请日:2018-12-27

    Abstract: Microelectronic assemblies that include a cooling channel, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a surface, a die having a surface, and a fluidic channel between the surface of the die and the surface of the package substrate, wherein a top surface of the fluidic channel is defined by the surface of the die and a bottom surface of the fluidic channel is defined by the surface of the package substrate. In some embodiments, a microelectronic assembly may include a package substrate having a surface; a die having a surface; and an interposer having a fluidic channel between the surface of the die and the surface of the package substrate.

Patent Agency Ranking