Abstract:
A method of making a relief image printing element from a photosensitive printing blank is described. The photosensitive printing blank comprises a laser ablatable mask layer disposed on at least one photocurable layer and the laser ablatable mask layer is selectively laser ablated to create an in situ mask and uncover portions of the at least one photocurable layer. The method includes a) pushing the photosensitive printing blank through a nip formed by a textured roller and a backing roller, wherein the textured roller contacts the in situ mask and the uncovered portions of the at least one photocurable layer; and b) exposing the at least one photocurable layer to at least one source of actinic radiation through the in situ mask to selectively cross link and cure the portions of the at least one photocurable layer not covered by the in situ mask. A defined topographical pattern is transferred from the textured surface of the roller to the at least one photocurable layer.
Abstract:
A method of developing a photocurable printing blank to produce a relief pattern comprising a plurality of relief dots. The photocurable printing blank comprises a backing layer having at least one photocurable layer disposed thereon, a barrier layer disposed on the at least one photocurable layer, and a laser ablatable mask layer disposed on top of the barrier layer. The method includes the steps of (1) imaging the at least one photocurable layer by ablating the laser ablatable mask layer to create the relief pattern on the photocurable printing blank the printing blank to actinic radiation through the barrier layer and mask layer to one or more sources of actinic radiation to selectively crosslink and cure portions of the at least one photocurable layer, wherein the at least one photocurable layer is crosslinked and cured in the portions not covered by the mask layer, thereby creating the relief pattern; (3) developing the printing blank to remove the barrier layer, the laser ablated mask layer and uncured portions of the photocurable layer and reveal the relief pattern. The presence of the barrier layer produces printing dots having desired characteristics. The method can also be used with an analog platemaking process that uses a negative instead of an ablatable mask layer.
Abstract:
An inkjet printer is used to apply an ink that is substantially opaque to actinic radiation in at least one wavelength region effective to cure the photosensitive printing plate to the edges and corners, of a printing plate after the plate has been trimmed (i.e., cut) to a suitable size and shape for mounting on a printing sleeve or cylinder. Use of inkjet printing allows for the cut surfaces of the plate to quickly and accurately be coated with a UV-opaque ink and prevents, or substantially eliminates, undesirable curing of cut surfaces of a photosensitive printing plate. The ink covers the photocurable surfaces exposed by the cutting process and prevents the cut surfaces of the printing plate from undesirably curing until proper exposure and development of the printing plate.
Abstract:
An apparatus for thermally processing a relief image printing element and a method of using the same are described. The printing element comprises at least one photopolymer layer and is selectively exposed to actinic radiation to crosslink portions of the at least one photopolymer layer. The apparatus comprises: (a) means for supporting the printing element; (b) heating means for melting or softening non-crosslinked portions of the at least one photopolymer layer; (c) at least one rotatable roll that is capable of bringing a blotting material into contact with the at least one photopolymer layer to remove the melted or softened non-crosslinked portions of the at least one photopolymer layer,; and (d) an element arranged adjacent to the at least one rotatable roll for removing non-crosslinked photopolymer remaining on a surface of the at least one rotatable roll after step c). The apparatus may alternatively be operated without a blotting material.
Abstract:
A method of making a relief image printing element from a photosensitive printing blank is provided. A photosensitive printing blank with a laser ablatable layer disposed on at least one photocurable layer is ablated with a laser to create an in situ mask. The printing blank is then exposed to at least one source of actinic radiation through the in situ mask to selectively cross link and cure portions of the photocurable layer. Diffusion of air into the at least one photocurable layer is limited during the exposing step and preferably at least one of the type, power and incident angle of illumination of the at least one source of actinic radiation is altered during the exposure step. The resulting relief image comprises a plurality of dots and a dot shape of the plurality of dots that provide optimal print performance on various substrates, including corrugated board.