Abstract:
The invention in some aspects relates to high throughput methods and devices for evaluating mechanical, morphological, kinetic, rheological or hematological properties of cells, such as blood cells under regulated gas conditions. In some aspects, the invention relates to methods and devices for diagnosing and/or characterizing a condition or disease in a subject by measuring a property of a cell from the subject, under controlled gas conditions.
Abstract:
Systems and methods are disclosed that can provide estimates of elasto-plastic properties of material samples using data from instrumented indentation tests. Alternatively, or in addition, estimated load-depth curves can be constructed by certain methods and systems provided based on known mechanical properties. Some disclosed systems and methods use large deformation theory for at least part of the analysis and/or determinations and/or may account for strains of at least 5% in the area of contact between the indenter and the material sample, which can result in more accurate estimates of mechanical properties and/or deformation behavior.
Abstract:
A technique for determining properties such as Young's modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined.
Abstract:
Articles are provided that are highly resistant to indentation, or impact, against their surfaces. The surfaces of these articles are functionally-graded in Young's modulus. Methods of making the article and methods of use of the article to resist impact are provided.
Abstract:
An indentation measurement apparatus is retrofittable onto any of a variety of load-applying frames and includes a mount for mounting an indenter of any geometry (for example blunt or sharp). The arrangement is very stiff and mechanical values including Young's modulus, strain hardening exponent, yield strength, and hardness can be obtained from a single load/unload versus displacement test. A wide variety of materials can be tested using the apparatus. An optical probe can measure displacement of the indenter head relative to a sample. A method of calculating an area of contact between the indenter and the sample directly from the load/displacement measurements is presented, as is a method of calculating the strain hardening exponent.