22.
    发明专利
    未知

    公开(公告)号:DE3842468A1

    公开(公告)日:1989-06-29

    申请号:DE3842468

    申请日:1988-12-16

    Abstract: A semiconductor device is formed with a high specific resistance zone between the anode and cathode zones on each side of the device, with a lattice defect zone in the anode zone in the vicinity of the high specific resistance zone. As a result, the turn-off time for the device can be sufficiently shortened, not only at normal temperatures, but at relatively high temperatures as well.

    FIELD EMISSION-TYPE ELECTRON SOURCE AND METHOD OF PRODUCING THE SAME

    公开(公告)号:AU2003292557A1

    公开(公告)日:2004-07-29

    申请号:AU2003292557

    申请日:2003-12-26

    Abstract: A field emission-type electron source has a plurality of electron source elements ( 10 a) formed on the side of one surface (front surface) of an insulative substrate ( 11 ) composed of a glass substrate. Each of electron source elements ( 10 a) includes a lower electrode ( 12 ), a buffer layer ( 14 ) composed of an amorphous silicon layer formed on the lower electrode ( 12 ), a polycrystalline silicon layer ( 3 ) formed on the buffer layer ( 14 ), a strong-field drift layer ( 6 ) formed on the polycrystalline silicon layer ( 3 ), and a surface electrode ( 7 ) formed on the strong-field drift layer ( 6 ). The field emission-type electron source can achieved reduced in-plain variation in electron emission characteristics.

    24.
    发明专利
    未知

    公开(公告)号:DE69914556D1

    公开(公告)日:2004-03-11

    申请号:DE69914556

    申请日:1999-09-25

    Abstract: There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.

    25.
    发明专利
    未知

    公开(公告)号:AT259097T

    公开(公告)日:2004-02-15

    申请号:AT99118925

    申请日:1999-09-25

    Abstract: There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.

    Field emission electron source
    26.
    发明专利

    公开(公告)号:SG74751A1

    公开(公告)日:2000-08-22

    申请号:SG1999004823

    申请日:1999-09-24

    Abstract: There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.

    Semiconductor device
    30.
    发明专利

    公开(公告)号:GB2213988A

    公开(公告)日:1989-08-23

    申请号:GB8828659

    申请日:1988-12-08

    Abstract: A semiconductor device is formed with a high specific resistance zone between the anode and cathode zones on each side of the device, with a lattice defect zone in the anode zone in the vicinity of the high specific resistance zone. As a result, the turn-off time for the device can be sufficiently shortened, not only at normal temperatures, but at relatively high temperatures as well.

Patent Agency Ranking