Abstract:
Apparatus and method for modifying an object with electrons are provided, by which the object can be uniformly and efficiently modified with the electrons under a pressure substantially equal to atmospheric pressure even when having a relatively wide surface area to be treated. This method uses a cold-cathode electron emitter having the capability of emitting electrons from a planar electron emitting portion according to tunnel effect, and preferably comprising a pair of electrodes, and a strong field drift layer including nanocrystalline silicon disposed between the electrodes. The object is exposed to electrons emitted from the planar electron emitting portion by applying a voltage between the electrodes. It is preferred that an energy of the emitted electrons is selected from a range of 1 eV to 50 keV, and preferably 1 eV to 100 eV.
Abstract:
A field emission-type electron source has a plurality of electron source elements (10a) formed on the side of one surface (front surface) of an insulative substrate (11) composed of a glass substrate. Each of electron source elements (10a) includes a lower electrode (12), a buffer layer (14) composed of an amorphous silicon layer formed on the lower electrode (12), a polycrystalline silicon layer (3) formed on the buffer layer (14), a strong-field drift layer (6) formed on the polycrystalline silicon layer (3), and a surface electrode (7) formed on the strong-field drift layer (6). The field emission-type electron source can achieved reduced in-plain variation in electron emission characteristics.
Abstract:
A field emission type electron source 10 is provided with an n-type silicon substrate 1, a strong field drift layer 6 formed on the n-type silicon substrate 1 directly or inserting a polycrystalline silicon layer 3 therebetween, and an electrically conductive thin film 7, which is a thin gold film, formed on the strong field drift layer 6. Further, an ohmic electrode 2 is provided on the back surface of the n-type silicon substrate 1. Hereupon, electrons, which are injected from the n-type silicon substrate 1 into the strong field drift layer 6, drift in the strong field drift layer 6 toward the surface of the layer, and then pass through the electrically conductive thin film 7 to be emitted outward. The strong field drift layer 6 is formed by making the polycrystalline silicon 3 formed on the n-type silicon substrate 1 porous by means of an anodic oxidation, and further oxidizing it using dilute nitric acid or the like.
Abstract:
A semiconductor device is formed with a high specific resistance zone between the anode and cathode zones on each side of the device, with a lattice defect zone in the anode zone in the vicinity of the high specific resistance zone. As a result, the turn-off time for the device can be sufficiently shortened, not only at normal temperatures, but at relatively high temperatures as well.
Abstract:
A field emission type electron source 10 is provided with an n-type silicon substrate 1, a strong field drift layer 6 formed on the n-type silicon substrate 1 directly or inserting a polycrystalline silicon layer 3 therebetween, and an electrically conductive thin film 7, which is a thin gold film, formed on the strong field drift layer 6. Further, an ohmic electrode 2 is provided on the back surface of the n-type silicon substrate 1. Hereupon, electrons, which are injected from the n-type silicon substrate 1 into the strong field drift layer 6, drift in the strong field drift layer 6 toward the surface of the layer, and then pass through the electrically conductive thin film 7 to be emitted outward. The strong field drift layer 6 is formed by making the polycrystalline silicon 3 formed on the n-type silicon substrate 1 porous by means of an anodic oxidation, and further oxidizing it using dilute nitric acid or the like.
Abstract:
There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.
Abstract:
There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.
Abstract:
A semiconductor device is formed with a high specific resistance zone between the anode and cathode zones on each side of the device, with a lattice defect zone in the anode zone in the vicinity of the high specific resistance zone. As a result, the turn-off time for the device can be sufficiently shortened, not only at normal temperatures, but at relatively high temperatures as well.