Abstract:
A power amplification circuit (10) includes a scalable power amplifier (20) to produce an RF output signal (50) at an output of the power amplification circuit (10), and a variable impedance circuit (30) coupled to the output of the power amplification circuit (10). The scalable power amplifier (20) includes a plurality of selectively activated amplifier elements (22), (24), (26) to produce the RF output signal (50) in accordance with a desired RF output signal power level. The power amplification circuit (10) selectively activates individual amplifier elements by, for example reducing power or increasing power to at least one amplifier element. The variable impedance circuit (30) varies an impedance of the variable impedance circuit (30) to dynamically load the output of the scalable power amplifier(20).
Abstract:
A transmitter circuit (10) includes a phase shifter (20) that receives phase shift compensation and timing data (40), and an amplifier (30) that receives a control signal (70) to initiate an efficiency enhancement technique. The phase shifter (20) receives the phase shift compensation and timing data (40), and the amplifier (30) receives the control signal (70) at a pre-defined relative time such that the compensation phase shift by the phase shifter (20) compensates for a pre-determined phase change in the amplifier (30) to produce an RF output signal (80) with a reduced predicted phase change.
Abstract:
The present invention provides a method and apparatus for supplying power to a load at a plurality of different power levels. The method includes changing between high and low power outputs of the power amplifier when amplifying a signal having a common modulation format. A different bias is applied to the power amplifier at the low power output than the bias applied to the power amplifier at the high power output. The output of the power amplifier is loaded with a different impedance at the low power output than the impedance loaded at the output of the power amplifier output at the high power output. In at least one embodiment, the power amplifier changes between high and low power outputs at a different threshold level dependant upon whether the power amplifier is transitioning from the high power output to the low power output, or whether the power amplifier is transitioning from the low power output to the high power output.
Abstract:
A radio communications device 100 including a processor 120 having a digital signal processor (DSP) coupled to a transceiver 110. The transceiver includes a digital-to-phase synthesizer having one or more independently variable frequency or phase signal outputs coupled to a transmitter and/or to a receiver. The variable frequency and phase outputs of the digital-to phase synthesizer are mixed with corresponding received signals and are capable of frequency or phase modulating information signals for transmission. Amplitude modulated signals may be provided through polar modulation by combining synthesizer outputs at a summer.
Abstract:
A power amplifier load adjust system includes a power amplifier and a variable impedance network coupled to the output of the power amplifier. The variable impedance network presents a plurality of impedances to the output of the power amplifier responsive to a load control signal. A control circuit generates a transmit power command and a channel frequency command. Memory stores a plurality of control values as a function of output power and frequency. A processing circuit coupled to the variable impedance network, the control circuit, and the memory retrieves the plurality of control values and uses them to generate the load control signal in response to the transmit power command and the channel frequency command.
Abstract:
The system includes a variable-impedance network (36), connected to the output of a power amplifier (32). The network provides a number of impedances in response to a load control signal at the output of the power amplifier. A control circuit generates a transmission power commend and a channel frequency command. A memory (40) stores a number of control values as a function of the output power and the operating frequency of the power amplifier (32). A processing circuit (38) is connected to the variable-impedance network, the control circuit and the memory. The processing circuit retrieves the control values stored in the memory, and uses them to generate the load control signal in response to the transmission power command. An Independent claim is included for a method of controlling a variable-impedance network at the output of a power amplifier.
Abstract:
A power amplifying circuit with load adjust for control of adjacent and alternate channel power. A power amplifier amplifies an input signal to produce an amplified signal. A variable impedance network presents different impedances to the output of the power amplifier responsive to a load control signal. A peak-to-average detector provides an indication of a peak-to-average ratio of the amplified signal. A controller coupled to the peak-to-average detector and the variable impedance network produces the load control signal responsive to the indication of the peak-to-average ratio.