Abstract:
A method in a wireless communication transmitter including a baseband processor (310) that configures the transmitter for a particular signal configuration, and a headroom controller (350) for adjusting transmitter headroom based on the particular signal configuration. In one embodiment, the headroom is controlled based on a power metric, for example, a 3rd order polynomial or a peak to average ratio (PAR) metric, that is a function of the signal configuration. In another embodiment, the headroom is adjusted using information in a look up table.
Abstract:
An enhancement mode semiconductor device has a barrier layer disposed between the gate electrode of the device and the semiconductor substrate underlying the gate electrode. The barrier layer increases the Schottky barrier height of the gate electrode-barrier layer-substrate interface so that the portion of the substrate underlying the gate electrode operates in an enhancement mode. The barrier layer is particularly useful ill compound semiconductor field effect transistors, and preferred materials for the barrier layer include aluminum gallium arsenide and indium gallium arsenide.
Abstract:
An enhancement mode semiconductor device has a barrier layer (102) disposed between the gate electrode (104) of the device and the semiconductor substrate (106) underlying the gate electrode (104). The barrier layer (102) increases the Schottky barrier height of the gate electrode-barrier layer-substrate interface so that the portion of the substrate (106) underlying the gate electrode (104) operates in an enhancement mode. The barrier layer (102) is particularly useful in compound semiconductor field effect transistors, and preferred materials for the barrier layer include aluminum gallium arsenide and indium gallium arsenide.
Abstract:
A power amplification circuit (10) includes a scalable power amplifier (20) to produce an RF output signal (50) at an output of the power amplification circuit (10), and a variable impedance circuit (30) coupled to the output of the power amplification circuit (10). The scalable power amplifier (20) includes a plurality of selectively activated amplifier elements (22), (24), (26) to produce the RF output signal (50) in accordance with a desired RF output signal power level. The power amplification circuit (10) selectively activates individual amplifier elements by, for example reducing power or increasing power to at least one amplifier element. The variable impedance circuit (30) varies an impedance of the variable impedance circuit (30) to dynamically load the output of the scalable power amplifier(20).
Abstract:
A power amplification circuit (10) includes a scalable power amplifier (20) to produce an RF output signal (50) at an output of the power amplification circuit (10), and a variable impedance circuit (30) coupled to the output of the power amplification circuit (10). The scalable power amplifier (20) includes a plurality of selectively activated amplifier elements (22), (24), (26) to produce the RF output signal (50) in accordance with a desired RF output signal power level. The power amplification circuit (10) selectively activates individual amplifier elements by, for example reducing power or increasing power to at least one amplifier element. The variable impedance circuit (30) varies an impedance of the variable impedance circuit (30) to dynamically load the output of the scalable power amplifier(20).