Abstract:
A method is specified for producing a light-emitting semiconductor component, in which method a light-emitting semiconductor layer sequence (2) with an active layer (3) that is designed to emit light during operation of the semiconductor component is provided, a wavelength conversion layer (4) containing at least one wavelength conversion material is applied on the semiconductor layer sequence (2), and a ceramic layer (5) is applied on the wavelength conversion layer (4) by means of an aerosol deposition process. A light-emitting semiconductor component is also specified.
Abstract:
A process of producing a component includes providing a substrate having an electrically conductive surface in the form of an electrically conductive layer; subdividing the layer with the aid of a laser process into a first electrically autonomous region and a second electrically autonomous region, wherein an electrically insulating region is formed in the electrically conductive layer to electrically separate the electrically autonomous regions; forming an electrical potential difference between the first electrically autonomous region and the second electrically autonomous region; and applying an electrically charged substance or an electrically charged substance mixture onto the first electrically autonomous region and/or the second electrically autonomous region, wherein the electrically autonomous region and/or an amount of the applied electrically charged substance or of the electrically charged substance mixture are adjusted by the electrical potential difference.
Abstract:
An optoelectronic semiconductor chip, based on a nitride material system, comprising at least one active quantum well, wherein during operation electromagnetic radiation is generated in the active quantum well, the active quantum well comprises N successive zones in a direction parallel to a growth direction z of the semiconductor chip, N being a natural number greater than or equal to 2, the zones are numbered consecutively in a direction parallel to the growth direction z, at least two of the zones have average aluminium contents k which differ from one another, and the active quantum well fulfils the condition: 50≦∫(35−k(z))dz−2.5N−1.5∫dz≦120.
Abstract:
An optoelectronic semiconductor component includes a semiconductor chip having a semiconductor layer sequence including an active region that generates radiation; a radiation exit surface running parallel to the active region; a mounting side surface that fixes the semiconductor component and runs obliquely or perpendicularly to the radiation exit surface and at which at least one contact area for external electrical contacting is accessible; a molded body molded onto the semiconductor chip in places and forming the mounting side surface at least in regions; and a contact track arranged on the molded body and electrically conductively connecting the semiconductor chip to the at least one contact area.
Abstract:
An optical assembly and a display device are disclosed. In an embodiment an optical assembly includes a common carrier, a plurality of first chip groups, each first chip group comprising at least two similar luminescence diode chips, a plurality of second chip groups, each second chip group comprising at least two similar luminescence diode chips, wherein the first and second chip groups are arranged planar along a regular grid of first unit cells on a main surface of the common carrier and an optical element arranged downstream of the first and second chip groups with respect to a main radiation direction, wherein the luminescence diode chips of the different chip groups are configured to emit electromagnetic radiation of different wavelength characteristics.
Abstract:
A process of producing a component includes providing a substrate having an electrically conductive surface in the form of an electrically conductive layer; subdividing the layer with the aid of a scratching process into a first electrically autonomous region and a second electrically autonomous region, wherein an electrically insulating region is formed in the electrically conductive layer to electrically separate the electrically autonomous regions; forming an electrical potential difference between the first electrically autonomous region and the second electrically autonomous region; and applying an electrically charged substance or an electrically charged substance mixture onto the first electrically autonomous region and/or the second electrically autonomous region, wherein the electrically autonomous region and/or an amount of the applied electrically charged substance or of the electrically charged substance mixture are adjusted by the electrical potential difference.
Abstract:
A process of producing a component includes providing a substrate having an electrically conductive surface in the form of an electrically conductive layer; subdividing the layer with the aid of a scratching process into a first electrically autonomous region and a second electrically autonomous region, wherein an electrically insulating region is formed in the electrically conductive layer to electrically separate the electrically autonomous regions; forming an electrical potential difference between the first electrically autonomous region and the second electrically autonomous region; and applying an electrically charged substance or an electrically charged substance mixture onto the first electrically autonomous region and/or the second electrically autonomous region, wherein the electrically autonomous region and/or an amount of the applied electrically charged substance or of the electrically charged substance mixture are adjusted by the electrical potential difference.
Abstract:
A method of producing an optoelectronic component includes providing a wafer substrate that includes a light-emitting layer sequence, singulating the wafer substrate having the layer sequence into semiconductor components, applying the semiconductor components to an intermediate carrier, arranging a potting material on the intermediate carrier such that the potting material laterally surrounds the semiconductor components and is in direct contact, at least in places, with side surfaces of the semiconductor components, arranging one contact on one semiconductor component and the potting material, wherein one contact is arranged on a side of the semiconductor component and the potting material remote from the intermediate carrier, connecting the component to a carrier element, on a side of the semiconductor components remote from the intermediate carrier, removing the intermediate carrier and the wafer substrate of the semiconductor components, and bringing the semiconductor components into electrical contact by the contacts and the potting material.
Abstract:
The invention relates to a lighting means (1), comprising: an optical element (3), which has a main extension direction (Z), a radiation inlet surface (3a), and a radiation outlet surface (3b); and at least two light-emitting diodes (2), which each comprise at least one light-emitting diode chip (21) and a radiation passage surface (2a), which extends along a main extension plane (XZ); wherein the at least two lighting-emitting diodes (2) are arranged along the main extension direction (Z) of the optical element (3), the radiation inlet surface (3a) of the optical element (3) faces the radiation passage surfaces (2a) of the at least two light-emitting diodes (2), the optical element (3) is formed as a solid body, the radiation inlet surface (3a) of the optical element (3) is flat or convexly curved, and the radiation outlet surface (3b) of the optical element (3) comprises at least one recess (4) in the optical element (3).
Abstract:
A method for producing optoelectronic semiconductor components and an optoelectronic semiconductor component are disclosed. In an embodiment the method includes: A) creating a blank by pultrusion from a glass melt, B) shaping the blank into a billet-shaped optical element with a longitudinal axis, the optical element having a mounting side and a light outlet side, C) producing conductor tracks on the mounting side, D) mounting a plurality of optoelectronic semiconductor chips on the mounting side of the optical element and connecting them to the conductor tracks and E) separating the optical element into the optoelectronic semiconductor components, wherein each optoelectronic semiconductor component comprises at least two of the semiconductor chips, and wherein at least steps A) to D) are performed in the stated sequence.