Abstract:
An optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure. A method of producing an optically effective element includes providing a carrier, forming a first optically effective structure on a top side of the carrier, and arranging a cover above the top side of the carrier and the first optically effective structure.
Abstract:
An optoelectronic semiconductor component includes a light-emitting semiconductor body having a radiation side, a current expansion layer arranged on the radiation side of the semiconductor body and at least partially covers this side, wherein the current expansion layer includes an electrically-conductive material transparent to the light radiated by the semiconductor body, and particles of a further material, and an electrical contact arranged on a side of the current expansion layer facing away from the semiconductor body.
Abstract:
An optoelectronic semiconductor component includes a light-emitting semiconductor body having a radiation side, a current expansion layer arranged on the radiation side of the semiconductor body and at least partially covers this side, wherein the current expansion layer includes an electrically-conductive material transparent to the light radiated by the semiconductor body, and particles of a further material, and an electrical contact arranged on a side of the current expansion layer facing away from the semiconductor body.
Abstract:
A process of producing a component includes providing a substrate having an electrically conductive surface in the form of an electrically conductive layer; subdividing the layer with the aid of a laser process into a first electrically autonomous region and a second electrically autonomous region, wherein an electrically insulating region is formed in the electrically conductive layer to electrically separate the electrically autonomous regions; forming an electrical potential difference between the first electrically autonomous region and the second electrically autonomous region; and applying an electrically charged substance or an electrically charged substance mixture onto the first electrically autonomous region and/or the second electrically autonomous region, wherein the electrically autonomous region and/or an amount of the applied electrically charged substance or of the electrically charged substance mixture are adjusted by the electrical potential difference.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip with a first surface and a second surface. The component also includes a protective chip which has a protective diode, a first surface and a second surface. The semiconductor chip and the protective chip are embedded in a molded body. A first electrical contact and a second electrical contact are arranged on the first surface of the semiconductor chip. A third electrical contact and a fourth electrical contact are arranged on the first surface of the protective chip. The first electrical contact is electrically connected to the third electrical contact. In addition, the second electrical contact is electrically connected to the fourth electrical contact.
Abstract:
The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
Abstract:
An optoelectronic semiconductor component has a volume-emitting sapphire flip-chip with an upper side and a lower side. This optoelectronic semiconductor component is embedded in an optically transparent mold body with an upper side and a lower side.
Abstract:
An optoelectronic component includes a composite body including a molded body; and an optoelectronic semiconductor chip embedded into the molded body, wherein the optoelectronic semiconductor chip includes a first electrical contact on its top side, a first top side metallization is arranged on the top side of the composite body and electrically conductively connects the first electrical contact to the through contact, a second top side metallization is arranged on the top side of the composite body and electrically insulated with respect to the first top side metallization, the second top side metallization completely delimits a part of the top side of the optoelectronic semiconductor chip, and a wavelength-converting material is arranged in a region completely delimited by the second top side metallization on the top side of the composite body, the wavelength-converting material extending as far as the second top side metallization.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip with a first surface and a second surface. The component also includes a protective chip which has a protective diode, a first surface and a second surface. The semiconductor chip and the protective chip are embedded in a molded body. A first electrical contact and a second electrical contact are arranged on the first surface of the semiconductor chip. A third electrical contact and a fourth electrical contact are arranged on the first surface of the protective chip. The first electrical contact is electrically connected to the third electrical contact. In addition, the second electrical contact is electrically connected to the fourth electrical contact.
Abstract:
An optoelectronic semi-conductor component includes an optoelectronic semi-conductor chip embedded into an electrically-insulating shaped body that has an upper face and a lower face. In the shaped body, an electrical via is also embedded which forms an electrically-conductive connection between the upper face and the lower face of the shaped body. On the upper face of the shaped body, a reflective layer is arranged which forms an electrically-conductive connection between an electrical semi-conductor chip contact and the via. The reflective layer covers at least 50% of the upper face of the shaped body.