Abstract:
Provided herein is an integrated device that includes a substrate, a die, a heat-dissipation layer located between the substrate and the die, and a first interconnect configured to couple the die to the heat-dissipation layer. The heat-dissipation layer may be configured to provide an electrical path for a ground signal. The first interconnect may be further configured to conduct heat from the die to the heat-dissipation layer. The integrated device may also include a second interconnect configured to couple the die to the substrate. The second interconnect may be further configured to conduct a power signal between the die and the substrate. The integrated device may also include a dielectric layer located between the heat-dissipation layer and the substrate, and a solder-resist layer located between the die and the heat-dissipation layer.
Abstract:
An integrated circuit (IC) substrate that includes a second patterned metal layer formed in between a first patterned metal layer is disclosed. A dielectric layer formed on the first patterned metal layer separates the two metal layers. A non-conductive layer is formed on the dielectric layer and the second patterned metal layer.
Abstract:
An embedded multi-terminal capacitor embedded in a substrate cavity includes at least one metal layer patterned into a plurality of power rails and a plurality of ground rails. The substrate includes an external power network.
Abstract:
Systems and methods for preventing warpage of a semiconductor substrate in a semiconductor package (200). A continuous or uninterrupted stiffener structure (208) is designed with a recessed groove (208b), such that passive components, such as, high density capacitors are housed within the recessed groove. The stiffener structure with the recessed groove is attached to the semiconductor substrate (202) using anisotropic conductive film (ACF) or anisotropic conductive paste (ACP). The stiffener structure with the recessed groove surrounds one or more semiconductor devices (204) that may be formed on the semiconductor substrate. The stiffener structure with the recessed groove does not extend beyond horizontal boundaries of the semiconductor substrate.
Abstract:
One feature pertains to a multi-chip package that includes a substrate and an electromagnetic interference (EMI) shield coupled to the substrate. At least one integrated circuit is coupled to a first surface of the substrate. The EMI shield includes a metal casing configured to shield the package from radio frequency radiation, a dielectric layer coupled to at least a portion of an inner surface of the metal casing, and a plurality of signal lines. The signal lines are coupled to the dielectric layer and electrically isolated from the metal casing by the dielectric layer. At least one other integrated circuit is coupled to an inner surface of the EMI shield, and at least a portion of the inner surface of the EMI shield faces the first surface of the substrate. The signal lines are configured to provide electrical signals to the second circuit component.
Abstract:
A package-on-package (PoP) structure includes a first die, a second die, and a memory device electrically coupled to the first die and the second die by an interposer between the first die and the second die. The interposer includes copper-filled vias formed within a mold.
Abstract:
The present disclosure provides semiconductor packages and methods for fabricating PoP semiconductor packages. The PoP semiconductor package may comprise a first semiconductor package, the first semiconductor package comprising an anodized metal lid structure comprising (i) a central cavity having a central cavity opening direction and (ii) at least one perimeter cavity having a perimeter cavity opening direction facing in an opposite direction of the central cavity opening direction, a first semiconductor device arranged in the central cavity of the anodized metal lid structure, a redistribution layer electrically coupled to the first semiconductor device, wherein a conductive trace formed in the redistribution layer is exposed to the at least one perimeter cavity, and solder material arranged in the at least one perimeter cavity, and a second semiconductor package, the second semiconductor package comprising at least one conductive post, wherein the at least one conductive post is electrically coupled to the solder material arranged in the at least one perimeter cavity.
Abstract:
Some novel features pertain to a device that includes a first integrated device package and a second integrated device package. The first integrated device package includes a first package substrate, a first integrated device, and a first configurable optical transmitter. The first configurable optical transmitter is configured to be in communication with the first integrated device. The first configurable optical transmitter is configured to transmit an optical beam at a configurable angle. The first configurable optical transmitter includes an optical beam source, an optical beam splitter, and a set of phase shifters coupled to the optical beam splitter. The set of phase shifters is configured to enable the angle at which the optical beam is transmitted. The second integrated device package includes a second package substrate, a second integrated device, and a first optical receiver configured to receive the optical beam from the first configurable optical transmitter.
Abstract:
Integrated devices include a substrate, and a capacitor embedded within the substrate. The capacitor is configured to include a first electrode disposed on a first surface, a second electrode disposed on an opposing second surface, and a plurality of capacitor plates extending transverse between the first electrode and the second electrode. Each capacitor plate is electrically coupled to one of the first electrode or the second electrode. A plurality of vias are positioned to extend through the substrate to one of the first electrode or the second electrode. Other aspects, embodiments, and features are also included.
Abstract:
Some novel features pertain to package substrates that include a substrate having an embedded package substrate (EPS) capacitor with equivalent series resistance (ESR) control. The EPS capacitor includes two conductive electrodes separated by a dielectric or insulative thin film material and an equivalent series resistance (ESR) control structure located on top of each electrode connecting the electrodes to vias. The ESR control structure may include a metal layer, a dielectric layer, and a set of metal pillars which are embedded in the set of metal pillars are embedded in the dielectric layer and extend between the electrode and the metal layer. The EPS capacitor having the ESR control structure form an ESR configurable EPS capacitor which can be embedded in package substrates.