Abstract:
Techniques for controlling receive diversity on a wireless device are disclosed. One or more thresholds may be determined based on one or more parameters which may be compared against the one or more thresholds to determine whether to enable or disable receive diversity. For example, a wireless device may determine a threshold value based on a first parameter related to communication of the wireless device. The wireless device may decide to enable or disable receive diversity based on a second parameter and the threshold value. The wireless device may receive data transmission with receive diversity when a decision is made to enable receive diversity. The first parameter may relate to characteristics of data being received by the wireless device and may be represented by percentage downlink utilization. The second parameter may relate to channel conditions and may be represented by an improvement in received signal quality with receive diversity enabled.
Abstract:
Methods and apparatus for active and passive dynamic electromagnetic radiation emission control in wireless devices by limiting transmit power in individual devices is disclosed. In various embodiments, electromagnetic radiation emissions from wireless devices are dynamically controlled using variable transmit power limits acquired through the use of RF ID /NFC tags that indicate transmit power limits, where such power limiting tags are embedded in clothing, furniture, etc., communication of transmit power limits over Bluetooth or other short range technologies, location-based transmit power limits, user input transmit power limits. Controlling the transmit power of mobiles as well as femtocells/access points for the purpose of minimizing SAR using variable transmit power limits is detailed.
Abstract translation:公开了通过限制各个设备中的发射功率的无线设备中的主动和被动动态电磁辐射发射控制的方法和装置。 在各种实施例中,使用通过使用指示发射功率限制的RF ID / NFC标签获得的可变发射功率限制来动态地控制来自无线设备的电磁辐射发射,其中这种功率限制标签嵌入在服装,家具等中,通信 通过蓝牙或其他短距离技术的发射功率限制,基于位置的发射功率限制,用户输入发射功率限制。 详细说明了控制移动台以及毫微微蜂窝/接入点的发射功率,以便尽可能减少SAR的发射功率。
Abstract:
Certain embodiments of the present disclosure support techniques for interference cancellation in a multi-mode wireless modem that supports coexistence of different radio technologies.
Abstract:
In general, this disclosure describes techniques for demodulating wireless signals. In particular, the techniques of this disclosure dynamically select between two or more demodulators based on channel quality information measured over a plurality of measurement periods. For example, a wireless communication device (WCD) may switch from a first demodulator to a second demodulator when the channel quality information associated with the demodulators indicates a better channel quality for the second demodulator than the first demodulator for a consecutive number of measurement periods. As another example, the WCD may compute, for each measurement period, the difference between the channel quality information associated with each of the demodulators, sum the differences, and switch demodulators when the total accumulation of the differences exceeds a threshold.
Abstract:
An apparatus, system, and method efficiently manage transmission power in a user equipment (UE) device by maintaining and applying an authorized power level to determine a transmission power level after a power limited transmission and before a new power control command has been received. The UE device maintains the authorized power level by monitoring and adjusting the authorized power level based on received power control commands. After a power limited transmission where the maximum power level is less than the authorized power level, the UE device determines the transmission power level for the next transmission based on the authorized power level. Accordingly, after the power limiting situation has ceased, the UE device transmits at the optimum power level eliminating the inefficiencies of transmitting at a lower than authorized power before the next power control command is received.
Abstract:
Techniques for controlling transmit power for a data transmission sent on multiple data channels, which may be intermittently active, are described. Each data channel is monitored for activity (e.g., based on an error correction code, received signaling information, received block energy, and so on) and deemed to be dormant or not dormant (e.g., based on the amount of elapsed time since activity was last detected on the data channel). A signal quality (SIR) target may be maintained for each non-dormant data channel and updated based on the status of received data blocks for the data channel. A final SIR target, used for power control of the data transmission, may be set to the highest SIR target among the SIR targets for the non-dormant data channels. The final SIR target may also be updated directly based on the status of received data blocks for the non-dormant data channels.
Abstract:
An apparatus for coarse compensation of a direct current (DC) offset in a direct to baseband receiver architecture utilizes a serial analog to digital converter (ADC), such as a Delta-Sigma converter, to convert the received signal to digital form. The output of the ADC is sampled for a predetermined number of samples and a counter coupled to the ADC is incremented each time the sample generated by the ADC is a logic one. The counter is not incremented if the sample from the ADC is a logic zero. After the predetermined number of samples is obtained, the counter value is indicative of the DC offset in the received signal. The counter value may be converted by a code converter to a correction value for easy operation of a digital to analog converter (DAC). If the number of samples from the ADC is a power of two, the code converted may be readily implemented by simply inverting the most significant bit (MSB) from the counter to thereby generate a twos complement version of the counter value. The correction value is coupled to the DAC to generate a compensation signal, which is provided to the received signal path in the form of a feedback signal to compensate for the DC offset.
Abstract:
A method, an apparatus, and a computer program product for data communication are provided. The method may include providing a frame of encoded data, generating a synchronization symbol to precede the encoded data when the frame is transmitted over a communication link, the synchronization symbol providing an identification of a type of the frame in accordance with an encoding scheme. The synchronization symbol may be encoded using a redundant coding scheme to support error correction for the identification of the type of frame. The frame may have a predefined fixed length.
Abstract:
Methods and apparatus for processing data received at a user equipment comprises determining a protocol data unit (PDU)-specific Layer 1 decoding metric of a Layer 1 decoded PDU. The methods and apparatus further comprises determining whether to perform a Layer 2 decoding of the Layer 1 decoded PDU based on the PDU-specific Layer 1 decoding metric.
Abstract:
Disclosed are methods and apparatus for rejecting unreliable downlink (DL) transmit power control (TPC) commands in windup mode. In one aspect, the method includes receiving by a user equipment (UE) a plurality of DLTPC commands from a base station, analyzing on one or more transmitted uplink (UL) TPC commands, detecting a windup mode based on the one or more DLTPC and ULTPC commands, and rejecting one or more DLTPC down commands in the windup mode.