Abstract:
Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal. The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
Abstract:
A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
Abstract:
Amplifiers with multiple outputs and separate gain control per output are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) may include first (640) and second (660) amplifier circuits. The first amplifier circuit (640) may receive and amplify an input radio frequency, RF, signal (RFin) based on a first variable gain and provide a first amplified RF signal (RFampl). The second amplifier circuit (660) may receive and amplify the input RF signal (RFin) based on a second variable gain and provide a second amplified RF signal (RFamp2). The input RF signal may include a plurality of transmitted signals being received by the wireless device. The first variable gain may be adjustable independently of the second variable gain. Each variable gain may be set based on the received power level of at least one transmitted signal being received by the wireless device.
Abstract:
A method for interference reduction is described. A sampling frequency is selected for a digital-to-analog converter (DAC) so that images within a DAC output signal do not interfere with one or more receivers. A sample rate is adjusted of an input signal that is provided to the DAC to match the sampling frequency for the DAC.
Abstract:
An apparatus for coarse compensation of a direct current (DC) offset in a direct to baseband receiver architecture utilizes a serial analog to digital converter (ADC), such as a Delta-Sigma converter, to convert the received signal to digital form. The output of the ADC is sampled for a predetermined number of samples and a counter coupled to the ADC is incremented each time the sample generated by the ADC is a logic one. The counter is not incremented if the sample from the ADC is a logic zero. After the predetermined number of samples is obtained, the counter value is indicative of the DC offset in the received signal. The counter value may be converted by a code converter to a correction value for easy operation of a digital to analog converter (DAC). If the number of samples from the ADC is a power of two, the code converted may be readily implemented by simply inverting the most significant bit (MSB) from the counter to thereby generate a twos complement version of the counter value. The correction value is coupled to the DAC to generate a compensation signal, which is provided to the received signal path in the form of a feedback signal to compensate for the DC offset.
Abstract:
An exemplary embodiment disclosed comprises a mixer having a plurality of input leads; a first degenerative impedance element coupled to a first input lead of the mixer; a second degenerative impedance element coupled to a second input lead of the mixer; and a local oscillator (LO) system comprising a plurality of duty cycle modes to generate a LO signal for the mixer, the local oscillator system operates in a first duty cycle based on a first gain state of the mixer, and in a second duty cycle based on a second gain state of the mixer.
Abstract:
A differential low noise amplifier (LNA) is operable in a selectable one of two modes. The LNA includes a first transistor (204), a second transistor (205), a third transistor (206) and a fourth transistor. In the first mode (PDC mode), the four transistors are configured to operate as a post-distortion cancellation (PDC) LNA. The third (206) and fourth (207) transistors operate as cancel transistors that improve linearity, but reduce LNA gain somewhat. In the second mode (high gain mode), the third (206) and fourth (207) transistors are configured so that amplified versions of the LNA input signal that they output are added to amplified versions of the LNA input signal that are output by the first and second main transistors (204, 205), resulting in increased gain. Multiplexing circuits are provided within the LNA so that the LNA is configurable into a selectable one of the two modes by controlling a digital mode control signal supplied to the LNA.
Abstract:
A system and method for canceling DC offset for Mobile Station Modems having direct conversion architectures. The present invention is a fast acquiring DC offset cancellation block that provides rapid and accurate DC offset estimates and cancellation techniques to support direct conversion architectures. The fast acquiring DC offset cancellation block combines four mechanisms to rapidly acquire and remove a DC offset estimate after power up, temperature changes, receiver frequency changes, and gain setting changes by increasing high pass loop bandwidth and adjusting DC offset levels at baseband. After removing the DC offset in large portions, the high pass loop bandwidth is decreased to fine tune the previous estimate and to remove any small variation in DC offset due to receiver self-mixing products.
Abstract:
A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
Abstract:
A receiver architecture for carrier aggregation is disclosed. In an exemplary design, an apparatus (e.g., a wireless device, a circuit module, etc.) includes a plurality of low noise amplifiers (LNAs), a plurality of switches, and at least one downconverter. The LNAs receive and amplify at least one input radio frequency (RF) signal and provide at least one amplified RF signal. The switches are coupled to the outputs of the plurality of LNAs. The at least one downconverter is coupled to the plurality of switches, downconverts the at least one amplified RF signal, and provides at least one downconverted signal. The switches reduce the number of downconverters needed to support reception of transmissions on multiple sets of carriers via multiple receive antennas. The LNAs and the switches may be implemented on at least one front-end module or a back-end module. The downconverter(s) are implemented on the back-end module.