Abstract:
An apparatus includes an array of pixels, each pixel including in-cell pixel logic and a piezoelectric micromechanical ultrasonic transducer (PMUT) element, each in-cell pixel logic being communicatively coupled with at least one adjacent pixel in the array. Transceiver electronics may operate the array in a selectable one of a first mode and a second mode. In the first mode, the array may generate a substantially plane ultrasonic wave. In the second mode, the array may generate, from at least one superpixel region, a focused beam of relatively high acoustic pressure, each superpixel region including at least one inner pixel disposed in a central portion of the superpixel region and at least a first group of outer pixels disposed in an outer portion of the superpixel region. The transceiver electronics may be configured to operate the array by configuring at least one in-cell pixel logic.
Abstract:
A piezoelectric micromechanical ultrasonic transducer (PMUT) includes a diaphragm disposed over a cavity, the diaphragm including a piezoelectric layer stack including a piezoelectric layer, a first electrode electrically coupled with transceiver circuitry, and a second electrode electrically coupled with the transceiver circuitry. The first electrode may be disposed in a first portion of the diaphragm, and the second electrode may be disposed in a second, separate, portion of the diaphragm. Each of the first and the second electrode is disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The PMUT is configured to transmit first ultrasonic signals by way of the first electrode during a first time period and to receive second ultrasonic signals by way of the second electrode during a second time period, the first time period and the second time period being at least partially overlapping.
Abstract:
An array of piezoelectric ultrasonic transducer elements includes a plurality of superpixel regions. Each superpixel region includes at least two pixel sets, a first pixel set of the at least two pixel sets being disposed in a central portion of the superpixel region, and at least a second pixel set being disposed in an outer portion of the superpixel region. An electrical coupling may be provided between the array and transceiver electronics. The transceiver electronics may be configured to operate the array in a selectable one of a first mode and a second mode. In the first mode, the array generates a substantially plane ultrasonic wave having a first acoustic pressure. In the second mode, the array generates, from each superpixel region, a focused beam having a second acoustic pressure that is substantially higher than the first acoustic pressure.
Abstract:
An apparatus may include an ultrasonic sensor stack, a foldable display stack and a transmission enhancement layer. The foldable display stack may include a display stiffener and display stack layers. The display stack layers may form one or more display stack resonators configured to enhance ultrasonic waves transmitted by the ultrasonic sensor stack in a first ultrasonic frequency range. In some implementations, a transmission enhancement resonator may include the display stiffener and the transmission enhancement layer. In some examples, the transmission enhancement resonator may include at least a portion of the ultrasonic sensor stack. The transmission enhancement resonator may be configured to enhance the ultrasonic waves transmitted by the ultrasonic sensor stack in the first ultrasonic frequency range.
Abstract:
An apparatus may include an ultrasonic sensor stack, a foldable display stack and a transmission enhancement layer. The foldable display stack may include a display stiffener and display stack layers. The display stack layers may form one or more display stack resonators configured to enhance ultrasonic waves transmitted by the ultrasonic sensor stack in a first ultrasonic frequency range. In some implementations, a transmission enhancement resonator may include the display stiffener and the transmission enhancement layer. In some examples, the transmission enhancement resonator may include at least a portion of the ultrasonic sensor stack. The transmission enhancement resonator may be configured to enhance the ultrasonic waves transmitted by the ultrasonic sensor stack in the first ultrasonic frequency range.
Abstract:
An ultrasonic fingerprint sensor system of the present disclosure may be provided with a flexible substrate. The ultrasonic fingerprint sensor system may include a film stack disposed on the flexible substrate that provides acceptable acoustic coupling for fingerprint sensing. The ultrasonic fingerprint sensor system includes a high acoustic impedance layer in an acoustic path of ultrasonic waves through a display. The high acoustic impedance layer can be electrically conductive or electrically nonconductive. In some implementations, the ultrasonic fingerprint sensor system includes an ultrasonic transceiver or an ultrasonic transmitter separate from an ultrasonic receiver.