Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a user equipment (UE) may obtain at least one of a plurality of circuit switched fall back (CSFB) parameters from at least one of an LTE eNodeB or a usable system, wherein the plurality of CSFB parameters comprise a channel list, a system time, and a neighbor list, and may perform one or more system acquisition actions based on the at least one of the plurality of obtained CSFB parameters.
Abstract:
Techniques for scheduling logical channels for data transmission are described. In one design, a user equipment (UE) is configured with a plurality of logical channels for sending data on the uplink. Each logical channel is associated with a priority and a data buffer size. The UE maintains a token bucket for each logical channel. In each scheduling interval or when an uplink grant is received, the UE determines a bucket level (which may be a positive value or a non-positive value) for each of the plurality of logical channels. The UE ascertains logical channels with bucket levels of the same polarity and then identifies logical channels of the same priority among all logical channels with the same bucket level polarity. The UE selects at least one identified logical channel for scheduling based on the data buffer size and/or the bucket level for each identified logical channel.
Abstract:
Systems and methods for policing traffic in communications systems are described herein. According to systems and methods herein, tokens are generated for a packet data network based on a peak transmission rate associated with the packet data network. Packets are selected for transmission over the packet data network based on availability of tokens.
Abstract:
Techniques for managing resources on a wireless device are described. In an aspect, congestion of resources on the wireless device may be detected. If any resources are deemed to be congested, then congestion of the congested resources may be relieved by controlling utilization of the congested resources by at least one client. In one design, flow control may be performed for at least one data flow to relieve congestion of the congested resources. A pattern indicative of when to send messages enabling data transmission and when to send messages disabling data transmission may be selected. Messages may then be sent in accordance with the pattern to control transmission of data for the at least one data flow. Another pattern with a higher ON fraction or a lower ON fraction may be selected based on usage of the congested resources.
Abstract:
A device and method for dropping an air interface is disclosed. In one embodiment, the method comprises communicating over a first air interface and a second air interface, determining an operational parameter based at least in part on a characteristic of the first air interface, and dropping the second air interface based at least in part on the operational parameter. A device and method for adding an air interface is also disclosed. In one embodiment, the system comprises a processor configured to drop one of a plurality of concurrently established air interfaces and to subsequently determine that at least one predetermined criteria is met before attempting to add the air interface.
Abstract:
Techniques for maintaining an always-on data session for an access terminal are described. Messages to keep alive the data session may be sent using non-traffic channels to avoid bringing up traffic channels just to send these messages. In one design, an access network may send a first message (e.g., a RouteUpdateRequest message) on a first non-traffic channel (e.g., a control channel) to the access terminal. The access terminal may return a second message (e.g., a RouteUpdate message) on a second non-traffic channel (e.g., an access channel) to the access network. The access network may then send a third message (e.g., for an Echo-Request) on the first non-traffic channel over a smaller area covering an approximate location of the access terminal, which may be determined based on the second message. The access terminal may return a fourth message (e.g., for an Echo-Reply) on the second non-traffic channel to the access network.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish, using a first subscription of the UE, a first communication connection associated with a first service. The UE may establish, using a second subscription of the UE, a second communication connection associated with a second service. The UE may operate in a dual subscriber identity module (SIM) dual active (DSDA) mode based at least in part on establishing the first communication connection and establishing the second communication connection. The UE may perform an action to maintain concurrent services, including the first service and the second service, while operating in the DSDA mode. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may establish a first wireless connection with a first wireless device, and a second wireless connection with the first wireless device or a second wireless device, where the first wireless connection and the second wireless connection operate in a dual connectivity mode. The UE may identify first and second energy efficiency metrics associated with the first and second wireless connections, respectively. The UE may identify one or more parameters associated with a transmit power of communications at the UE, and may compare the first energy efficiency metric and the second energy efficiency metric. The UE may then allocate a first power resource to the first wireless connection, a second power resource to the second wireless connection, or both, based on the comparison, the one or more parameters, or a combination thereof.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may establish one or more wireless connections for different subscriptions with a base station. The UE may receive an indication of a temporary mobile subscription identifier (TMSI) from the base station during a registration procedure. The UE may calculate a paging occasion (PO) based on the TMSI and may determine the PO fails to satisfy a threshold timing value. The UE may transmit one or more registration request to trigger additional registration procedures in which base station may transmit a new TMSI. The UE may calculate an updated PO based on the new TMSI. The UE may periodically receive one or more paging messages from the base station in a set of POs based on calculating the updated PO.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for determining a transmit power based on a pattern and/or future conditions for a transmission while maintaining radio frequency (RF) exposure compliance. An example method generally includes obtaining a pattern associated with one or more first transmissions, determining a transmit power for one or more second transmissions based at least in part on the pattern and an RF exposure limit, and transmitting the one or more second transmissions at the determined transmit power.