Abstract:
Various aspects described herein relate to techniques for beam discovery and beamforming in wireless communications (e.g., 5th Generation (5G) New Radio (NR)). In an aspect, a method related to signaling for channel state information reference signals (CSI-RSs) in wireless communications is provided. The method includes receiving, by a user equipment (UE), a CSI-RS beam of a set of CSI-RS beams, and the CSI-RS beam includes a change indication message. The method further includes determining, by the UE, whether the set of CSI-RS beams have changed based on a value of the change indication message.
Abstract:
Certain aspects of the present disclosure provide techniques for random access channel (RACH) communication. For example, certain aspects provide a method for wireless communication by a user-equipment (UE). The method generally includes transmitting a first message comprising a RACH preamble, receiving a second message comprising random access response (RAR) in response to the RACH preamble, transmitting a third message in response to the RAR, receiving a fourth message (MSG4) comprising a contention resolution message in response to the third message. In certain aspects, the fourth message may include a timing advance (TA) parameter which may be used to communicate one or more messages.
Abstract:
Techniques are described for wireless communication. One method includes performing a first beam sweep procedure to determine a first beam pair that includes a transmit beam of a first wireless node and a receive beam of a second wireless node, identifying a level of correspondence at one or both of the first wireless node and the second wireless node, the level of correspondence being between a transmit beam and a receive beam of a respective wireless node and determining, based on the level of correspondence, a range of a second beam sweep procedure to be performed in determining a second beam pair that includes a transmit beam of the second wireless node and a receive beam of the first wireless node.
Abstract:
Methods, systems, and devices for wireless communication are described. A network device, such as a base station, may transmit a set of reference symbols to a user equipment (UE). Each set of reference symbols may include two (or more) beamformed signals. The network device may receive, based on the set of reference symbols, a measurement report from the UE. The measurement report may include a co-phasing indicator associated with the set of reference symbols. The network device may identify, based at least in part on the measurement report, an antenna port precoder configuration to use for communicating with the UE.
Abstract:
Wireless communications systems and methods related to allocating resource blocks and resource block groups in a system band in order to reduce overhead associated with resource allocation. To reduce overhead, the wireless communication device communicates a signal in a control channel that indicates a general area and a resource block in the general area that stores data. The wireless communication device then communicates multiple resource blocks that include the resource block and communicates the data in the resource block using the signal. To reduce overhead, the wireless communication device also communicates multiple mappings for each resource block group into a set of resource blocks and a signal in a control channel that selects one of the multiple mappings. The communication device then determines resource blocks that are included in the resource block group according to the mapping, and communicates data in these resource blocks.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be communicating with a base station via beamformed transmissions on an active beam. The UE may receive from the base station refined reference signals (RRSs) that include an active beam RRS corresponding to the active beam. The UE may identify that the active beam RRS corresponds to the active beam and perform a beam state measurement on the active beam RRS. The UE may refine the active beam based at least in part on the beam state information of the active beam RRS.
Abstract:
Methods, systems, and devices for wireless communication provide for split symbol control by varying tone spacing and symbol duration for control channels in a subframe. The control symbols may be transmitted at various locations within the subframe and may be transmitted to different mobile devices. In some examples, multiple control symbols may be transmitted in a subframe to multiple mobile devices depending on the capabilities of each of the multiple mobile devices.
Abstract:
According to an aspect of the disclosure, a base station may convey the parameter information to the UE based on selection of particular resources to be used for transmission of synchronization signals, where the selected resources correspond to the particular parameter information. The UE may blindly detect the synchronization signals on various candidate resources and determine the parameter information based on the resources where the synchronization signals are detected. The apparatus may be a base station. In an aspect, the base station determines parameter information of one or more parameters. The base station selects, based on the parameter information, synchronization resources from a plurality of candidate resources for transmission of one or more synchronization signals, where the selected synchronization resources correspond to the parameter information. The base station transmits the one or more synchronization signals using the selected synchronization resources.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station and user equipment (UE) may use subframe configurations that include dynamically scheduled channel state information reference signal (CSI-RS) symbols. For example, a base station may identify a subframe configuration that includes one or more sets of CSI-RS symbols of a subframe. The base station may indicate to a UE whether sets of CSI-RS symbols may be enabled or disabled during the subframe. The UE may receive multiple CSI-RSs at different locations within the subframe as indicated by the base station, and transmit CSI feedback to the base station based on at least one of the received CSI-RSs. In some examples, multiple base stations may coordinate the use of subframe configurations that include CSI-RS symbols that may be enabled or disabled.
Abstract:
Uplink transmission power levels may be adjusted in response to changes in a directional beam used for wireless communications. A beam change may be identified, wherein the beam change includes a transition from a first transmission configuration based on a first beam direction of a cell to a second transmission configuration based on a second beam direction of the cell. A downlink (DL) message associated with the beam change may be received, wherein the DL message comprises a transmission power indication. An uplink (UL) message may be transmitted at a power level based at least in part on the transmission power indication.