Abstract:
Techniques for wireless communication at a station are described. One method for wireless communication at a station includes identifying a plurality of control parameters including at least one of a transmit power headroom parameter of the station, a buffer status report of the station, a transmit parameter of the station, a receive parameter of the station, channel quality information, a link parameter, or a combination thereof. The method may further include identifying a soliciting frame received from a second station, determining an allocation of resources for a physical layer convergence protocol (PLCP) packet data unit (PPDU) including one or more Medium Access Control (MAC) Protocol Data Units (MPDUs) to be sent in response to the soliciting frame, determining whether to include one or more control parameters of the plurality of control parameters in at least one of the MPDUs, and transmitting the PPDU to the second station.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may use wireless local area network (WLAN) signaling fields in a multiple user transmission preamble to communicate with a number of stations greater than a threshold. For example, the AP may determine that the number of stations is greater than the threshold and generate a compression indicator and an indication of the number of stations to include in a first signaling field. The AP may then generate a spatial configuration indicator in a second signaling field based on the number of stations and transmit the first and second signaling fields in a preamble of the multiple user transmission. Upon receiving the preamble, a station may identify the compression indicator and number of stations, and the spatial configuration indicator in the first and second signaling fields, and decode the multiple user transmission using a determined spatial decoding scheme.
Abstract:
The present disclosure provides various aspects related to techniques for generating trigger frames, at an access point (AP), that reduce the overhead associated with triggering an uplink transmission from the wireless station (STA). Features of the present disclosure achieve this by, for example, utilizing a single per-user information field of the trigger to signal a plurality of random access resource units that may be allocated to the one or more STAs in the network. Such a technique is an improvement over the conventional system that require each random access resource unit to be signaled separately in a separate per-user information field (thus increasing the overhead). Additionally, aspects of the present disclosure allow the AP to effectively signal to the STA whether the one or more resources allocated to the at least one STA are a single user resource unit allocation or a multi-user resource unit allocation.
Abstract:
Methods and apparatuses are disclosed for communicating over a wireless communication network. One such apparatus can include a memory that stores instructions and a processor coupled with the memory. The processor and the memory can be configured to identify one or more impacted tones of one or more resource units (RUs) overlapping a null sub-band, or guard band thereof, of a plurality of sub-bands available for wireless communication. The processor can be further configured to allocate, or receive allocation of, a plurality of channel bonded resource units (RU) of the plurality of sub-bands, based at least in part on the identified impacted tones. The apparatus further includes a transmitter configured to transmit data over the plurality of channel bonded RUs.
Abstract:
Methods and apparatuses for wireless communication according to various tone plans are provided. In one aspect, a method includes determining a first device communicates data within a 40 MHz, 80 MHz, or 160 MHz first frequency range and a second device communicates data within a 20 MHz second frequency range of the first frequency range, selecting first communication parameters for the first device and second communication parameters for the second device based on the determination; and communicating first data with the first device according to the first communication parameters at least partially simultaneously with communicating second data with the second device according to the second communication parameters.
Abstract:
Methods, apparatuses, and computer readable media for resource allocation signaling in a high efficiency wireless local area network (WLAN) are disclosed. A transmitter may identify a first indicator identifying a number of multi-user multiple-input/ multiple-output (MU-MIMO) stations associated with a first resource unit (RU) in a first content channel of a transmission frame. The transmitter may generate a first common portion of a WLAN signaling field in the first content channel. The first common portion may include the first indicator. The transmitter may identify a second indicator identifying an absence of MU-MIMO stations associated with a second RU in a second content channel of the transmission frame. The transmitter may generate a second common portion of the WLAN signaling field in the second content channel. The second common portion may include the second indicator. The transmitter may transmit the transmission frame including the WLAN signaling field.
Abstract:
A method of wirelessly communicating includes generating, at a wireless device, a packet. The method includes generating, for transmission to a plurality of receiving devices, a packet comprising a preamble field, the preamble field comprises a signal (SIG) field. The method further includes encoding a content of a first portion of the SIG field for each channel of a frequency bandwidth, the first portion comprising information for all receiving devices. The method further includes encoding a content of a second portion of the SIG field for each channel of the frequency bandwidth, the second portion comprising one or more codeblocks, the one or more codeblocks including information for each receiving device of the plurality of receiving devices.
Abstract:
Techniques are described for wireless communication. One or more wireless local area network (WLAN) preamble portions may span multiple 20 MHz frequency bands, and may be duplicated across a transmission bandwidth. WLAN preamble portions may include common portions for multiple receivers as well as dedicated portions for particular receivers, and common portions may be transmitted in a primary frequency band in some examples. Some techniques provide that WLAN preamble portions may be encoded using different sized code blocks. Various aspects of the disclosure also provide for signaling of resource allocations of WLAN wireless frames.
Abstract:
A wireless device may selectively add padding to an end of a data transmission in order to provide adequate time for a receiving device to process the transmitted data and transmit feedback related to the transmitted data. A wireless device may identify a total amount of data capable of being transmitted in a transmission, and determine a number of data bits to be transmitted in the transmission. An amount of padding may be selected based on a proportion of the total amount of data capable of being transmitted and the number of data bits. In some examples, a preamble for a feedback transmission may be transmitted concurrently with processing of the received transmission.