Abstract:
An apparatus includes an interleaver configured to interleave encoded data and to output a series of interleaved bits to be transmitted via a 1 MHz orthogonal frequency-division multiplexing (OFDM) transmission. The apparatus also includes a modulator configured to modulate the interleaved bits and a transform module configured to transform the modulated bits. A transmit module of the apparatus is configured to transmit the transformed bits included in one or more spatial streams of the 1 MHz OFDM transmission.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for frequency interleaving for use with 80 MHz transmissions, such as those in the IEEE 802.11ac amendment to the IEEE 802.11 standard. According to certain aspects, frequency interleaving spatial streams for transmissions on channels having widths of about 80 MHz may comprise using an interleaving depth of 26. The number of frequency rotations may be 58 (or 29) for up to four (or up to eight) spatial streams. According to certain aspects, frequency interleaving up to eight (or up to four) spatial streams for transmission on channels having widths of about 80 MHz may comprise performing frequency rotation for each of the spatial streams based on a frequency rotation index = [0 4 2 6 1 5 3 7] (or = [0 2 1 3]).
Abstract:
Systems and methodologies are described that facilitate utilizing dedicated reference signal in connection with downlink transmissions. A dedicated reference signal can comprise a set of dedicated reference symbols, which are inserted into a resource block in accordance with a specification provided by a dedicated reference signal structure. The dedicated reference signal structure can vary according to a rank utilized in the downlink transmission.
Abstract:
Certain aspects of the present disclosure relate to techniques for constructing a training sequence as a part of transmission preamble in an effort to minimize (or at least reduce) a peak-to-average power ratio (PAPR) at a transmitting node.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to LTF designs that support distributed transmissions. In some aspects, a transmitting device may obtain a sequence of values representing an LTF of a PPDU and may map the sequence of values to a number (N) of noncontiguous subcarrier indices of a plurality of subcarrier indices spanning a wireless channel according to a distributed tone plan. In some implementations, the transmitting device may modulate the sequence of values on N tones, representing a logical RU, and map the N tones to the N noncontiguous subcarrier indices, respectively. In some other implementations, the sequence of values may be obtained based on relative locations of the N noncontiguous subcarrier indices in the wireless channel.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to physical layer (PHY) convergence protocol (PLCP) protocol data unit (PPDU) designs that support distributed transmission. In some implementations, a PPDU may be generated based on one or more legacy tone plans. In such implementations, a portion of the PPDU may be modulated on a number (M) of tones representing a logical RU, and the M tones may be further mapped to M noncontiguous subcarrier indices in accordance with a distributed tone plan. In some other implementations, a PPDU may be generated based on a distributed tone plan. In such implementations, a portion of the PPDU may be modulated on a number (M) of tones coinciding with M noncontiguous subcarrier indices in accordance with the distributed tone plan.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to trigger frame and physical layer convergence protocol (PLCP) protocol data unit (PPDU) designs that support distributed transmission. In some implementations, an access point (AP) may transmit a trigger frame soliciting a trigger-based (TB) PPDU from a wireless station (STA), where the trigger frame carries RU allocation information indicating a number (N) of tones allocated for the STA and carries tone distribution information indicating whether the N tones are allocated for a contiguous transmission or a distributed transmission. In some other implementations, an AP or a STA may transmit a PPDU carrying distributed signaling information indicating whether the PPDU is transmitted as a contiguous transmission or a distributed transmission.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for physical layer (PHY) packet design for power spectral density (PSD) limits. In some implementations, a wireless communication device generates a plurality of PHY convergence protocol (PLCP) protocol data unit (PPDU) duplicates configured for transmission over a selected bandwidth, and transmits each PPDU duplicate of the plurality of PPDU duplicates on a corresponding frequency subband of a plurality of different frequency subbands. In some other implementations, the wireless communication device generates a PPDU for transmission over a set of duplicated resource units (RUs) allocated to the wireless communication device, and transmits the PPDU over the allocated set of duplicated RUs.
Abstract:
This disclosure provides systems, methods, and apparatus for link adaptation in a wireless local area network (WLAN). A link adaptation test packet from a first WLAN device to a second WLAN device may be formatted as a multiple-input-multiple-output (MIMO) transmission and may include one or more test portions for link quality estimation of the MIMO transmission. A link quality estimation portion of the test packet may permit measurement of link quality for various spatial streams of the MIMO transmission. The link adaptation test packet may enable a fast rate adaptation of a communication link based on the impact of interference to the various spatial streams. The second WLAN device may provide feedback information regarding the one or more test portions. The feedback information may be used to determine a transmission rate for a subsequent transmission from the first WLAN device to the second WLAN device based on wireless channel conditions.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for link adaptation in a wireless local area network (WLAN). A link adaptation test packet from a first WLAN device to a second WLAN may include a plurality of link adaptation test portions that are generated using a corresponding plurality of transmission rate options. For example, the plurality of link adaptation test portions may be modulated using different modulation and coding scheme (MCS) options. Thus, a single test packet may be used to evaluate different transmission rate options. The second WLAN device may provide feedback information regarding the link adaptation test portions. The feedback information may be used to determine a transmission rate for a subsequent transmission from the first WLAN device to the second WLAN device based on wireless channel conditions.