Abstract:
A light detection and ranging system includes a mirror unit rotating around a scan axis. The mirror unit includes a receiving portion and a transmitting portion offset by an angle about the scan axis relative to a surface plane of the receiving portion. Respective centroids of the receiving and transmitting portions are positioned at a common point on the scan axis while the receiving and transmitting portions rotate around the scan axis. A transmitter transmits a light pulse toward the mirror unit. The transmitting portion is positioned to reflect the light pulse toward a target. A receiver is positioned to reflect the light pulse reflected from the target toward the receiver. The angle offset compensates for a change between a cone of illumination of the transmitting portion and a field-of-view of the receiving portion resulting from the rotation of the mirror unit.
Abstract:
A LADAR has adjustable operational parameters to accommodate surveillance of a particular site. The LADAR includes a controller, a laser source governed by the controller to generate a laser beam pulsed at a pulse repetition rate, an optical scanner, a first set of optics, a first drive assembly governed by the controller, a second drive assembly governed by the controller, a light detector, a second set of optics for guiding laser echo pulses, and a processor coupled to the light detector to accommodate surveillance of the particular site.
Abstract:
A method of identifying an object in a laser beam illuminated scene based on material types comprises the steps of: emitting a pulsed beam of laser energy, each beam pulse comprising a plurality of different discrete wavelength emission components; illuminating a predetermined scene with the pulsed beam; receiving return laser pulses from objects within the illuminated scene, each return laser pulse comprising return components corresponding to the plurality of different discrete wavelength emission components; determining spectral reflectance values for the plurality of return components of each return laser pulse; determining a material type for each return laser pulse of the illuminated scene based on the plurality of reflectance values of the corresponding return pulse; indexing each determined material type to a position in the illuminated scene; and identifying an object in the illuminated scene based on material types and indexed positions thereof in the scene. A counterpart system for carrying out the method is also disclosed.