Abstract:
Presented is a method for obtaining a multi-level ROM in a dual gate EEPROM process flow. The method begins with, on a semiconductor substrate, defining active areas respectively for transistors of ROM cells, transistors of electrically erasable non-volatile memory cells, and additional transistors of the storage circuitry. Then, integrated capacitors are integrated in the storage circuit. According to this method, during the implanting step for forming integrated capacitors, at least an active area of the ROM cell is similarly implanted.
Abstract:
The step of forming source and drain regions (48', 55') for LV transistors includes the steps of forming sacrificial spacers (101) laterally to LV gate regions (43a); forming LV source and drain regions (55') in a self-aligned manner with the sacrificial spacers (101); removing the sacrificial spacers (101); forming HV gate regions (43d) of HV transistors; forming gate regions (43c) of selection transistors; forming control gate regions (43b) of memory transistors; simultaneously forming LDD regions (48') self-aligned with the LV gate regions (43a), HV source and drain regions (64) self-aligned with the HV gate regions (43d), source and drain regions (65a, 65b) self-aligned with the selection gate region (43c) and floating gate region (27b); depositing a dielectric layer; covering the HV and memory areas with a protection silicide mask (72); anisotropically etching the dielectric layer, to form permanent spacers (52') laterally to the LV gate regions (43a); removing the protection silicide mask (72); and forming silicide regions (75a1, 75a2) on the LV source and drain regions (48', 55') and on the LV gate regions (43a).
Abstract:
The invention relates to a simplified non-DPCC process for the definition of the tunnel area in non-volatile memory cells with semi-conductor floating gate, which are non-aligned and incorporated in a matrix of cells with associated control circuitry, to each cell a selection transistor being associated, the process comprising at least the following phases:
growth or deposition of a dielectric layer of gate of the sensing transistor and of the cells; tunnel mask for defining the area of tunnel; cleaning etching of the dielectric layer of gate in the area of tunnel up to the surface of the semi-conductor; growth of tunnel oxide;
Advantageously, the tunnel mask is extended above the region occupied by the selection transistor.
Abstract:
The manufacturing method comprises, in sequence, the steps of: depositing an upper layer (43) of polycrystalline silicon; defining the upper layer, obtaining LV gate regions (43a) of low voltage transistors and undefined portions (43); forming LV source and drain regions (55) laterally to the LV gate regions; forming a layer of silicide (57a1, 57a2, 57) on the LV source and drain regions (55), on the LV gate regions (43a), and on the undefined portions (43); defining stack gate regions (43b, 43c) and HV gate regions (43d) of high-voltage transistors; and forming HV source and drain regions (64) and cell regions (65a, 65b).