Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
The disclosure includes an arrangement of X-ray generator(s) (210), X-ray detector(s) (214), and/or X-ray calibration device(s) for performing X-ray measurements, such as attenuation and/or photo electric factor measurements, on formation core samples (204) in a downhole environment under conditions including limited space and operations at high pressure and temperature.
Abstract:
A neutron logging tool includes a neutron source and at least one position sensitive thermal or epithermal neutron detector. The logging tool further includes an electronic controller configured to estimate the axial location of detected neutrons. Measurement of the axial neutron flux distribution enables other formation and borehole parameters such as formation porosity and sensor standoff to be computed. In logging while drilling embodiments, a borehole caliper may also be computed form the axial neutron flux distribution.
Abstract:
Methods and systems for determining whether a tool has been deployed below a drill pipe are provided. A downhole tool can measure various characteristics, which then can be analyzed to determine the likelihood of a tool having been deployed below the drill pipe. For example, density and porosity measurements can be affected by the presence of casing or drill pipe, and thus such measurements can provide an indication of whether the tool has been deployed below the drill pipe.
Abstract:
Systems and methods for estimating absolute elemental concentrations of a subterranean formation from neutron-induced gamma-ray spectroscopy are provided. In one example, a system (10) for estimating an absolute yield of an element in a subterranean formation may include a downhole tool (12) and data processing circuitry (14). The downhole tool may include a neutron source (18) to emit neutrons into the formation, a neutron monitor (20) to detect a count rate of the emitted neutrons, and a gamma-ray detector (26,28) to obtain gamma-ray spectra deriving at least in part from inelastic gamma- rays produced by inelastic scattering events and neutron capture gamma-rays produced by neutron capture events. The data processing circuitry may be configured to determine a relative elemental yield from the gamma-ray spectra and to determine an absolute elemental yield based at least in part on a normalization of the relative elemental yield to the count rate of the emitted neutrons.
Abstract:
A well logging instrument includes a source of high energy neutrons (16) arranged to bombard a formation surrounding the instrument. A scintillator (32) sensitive to gamma radiation resulting from interaction of the high energy neutrons with the formation is disposed in the instrument. A neutron shielding material (38) surrounds the scintillator. A neutron moderator (40) surrounds the neutron shielding material. An amplifier is optically coupled to the scintillator.
Abstract:
A well logging instrument includes a source of high energy neutrons (16) arranged to bombard a formation surrounding the instrument. A scintillator (32) sensitive to gamma radiation resulting from interaction of the high energy neutrons with the formation is disposed in the instrument. A neutron shielding material (38) surrounds the scintillator. A neutron moderator (40) surrounds the neutron shielding material. An amplifier is optically coupled to the scintillator.
Abstract:
Method and system for analyzing electrical pulses contained in a pulse train signal representative of the interaction of x-ray bursts with a nuclear detector configured for subsurface disposal. The pulse train signal is sampled to form a digitized signal. The total energy deposited at the detector during an x-ray burst is determined from the digitized signal, and a count rate of x-ray pulses from the burst is determined. A subsurface parameter is determined using the total energy deposit.