Abstract:
In a liquid crystal display, a plurality of gate lines and data lines are provided on a first substrate including a display area as a screen, and a peripheral area external to the display area wherein a plurality of pixel electrodes are electrically connected to the gate lines and to the data lines, and some of the pixel electrodes extend to be located in the peripheral area; and optionally, a black matrix is formed on a second substrate disposed opposite to the first substrate for screening the extended portions of the pixel electrodes located in the peripheral area, a rubbing direction of aligning films is formed on the first and the second substrates towards the extended portions of the pixel electrodes located in the peripheral area so that impurity ions on the surface of the aligning film travel along the rubbing direction to stop at the extended portions of the pixel electrode, and an image defect area caused by the impurity ions is screened with the black matrix.
Abstract:
The present invention relates to a method for forming an electron emission source for an electron emission device and an electron emission device produced by the method. The method for forming an electron emission source comprises: depositing at least one kind of charged particles selected from the group consisting of carbon-based materials, metal particles, inorganic particles, and organic materials to a substrate charged by the opposite charge. The method provides an electron emission source for an electron emission device upon which carbon nanotubes are selectively deposited in a desired pattern without leaving surplus organic carbon. The resulting electron emission devices exhibit excellent life and electron emission characteristics. The method does not require additional surface treatment.
Abstract:
Disclosed is a composition for forming an electron emission source of a flat panel display device, and the electron emission source fabricated from the same. The composition includes one or more carbon series materials for electron emission with a purity of at least 95%, glass frit, a binder resin, and a solvent. The electron emission source fabricated from the composition for forming the electron emission source of the present invention has high electron emission efficiency.
Abstract:
A novel sense amplifier circuit is provided that includes a resistor and a reference cell connected in parallel to a reference line. The reference cell is composed of a floating-gate field effect transistor having the same characteristic as a memory cell. The reference cell is programmed so as to have a threshold voltage between the threshold voltages of an associated memory cell transistor in an on-state and an off state. According to this circuit configuration, a reference current is determined only by a current flowing through the resistor, when a gate voltage to a memory/reference cell is higher than the threshold voltage of the reference cell. This forces the reference current to exist between the on-cell current and the off-cell current, regardless of the gate voltage. Therefore, the maximum operating voltage of the sense amplifier circuit according to the invention is not limited by a variation of the gate voltage to the memory/reference cell, or by a variation of a power supply voltage.
Abstract:
A semiconductor memory device which is comprised of a plurality m of electrically isolated data memory sub-arrays for storing data bits and a plurality k of electrically isolated parity memory sub-arrays for storing parity bits, wherein each of the data and parity memory sub-arrays includes a plurality of memory cells arranged in a matrix of rows and columns, with the memory cells in each row connected to a common word line and the memory cells in each column connected to a common bit line. Row address decoders function to activate a selected word line in each of the memory sub-arrays, and column address decoders, in combination with column selection circuitry, function to couple a selected bit line in each of the memory sub-arrays to a plurality m of sense amplifiers, which function to sense the voltage level of respective ones of the selected bit lines, and produce output data and parity bits representative of these sensed voltage levels. An error checking and correction circuit compares the output data and parity bits in order to detect and correct errors in the output data bits. Because of the unique architecture of the semiconductor memory device of this invention, defects in word lines or bit lines are confined to a single bit, thereby rendering these defects easily reparable by means of an ECC circuit alone, and thus dispensing with the need for a redundant memory circuit.
Abstract:
A plasma display panel (PDP) comprises: a front substrate and a rear substrate which face each other; and a barrier wall which is interposed between the front substrate and the rear substrate, which includes base portions arranged on either side of a main discharge space, and protruding portions protruding on the base portions, respectively, and which defines stepped spaces on either side of the main discharge space. The stepped spaces are formed according to stepped surfaces formed by the base portions and the protruding portions. The PDP further comprises a pair of a scan electrode and a sustain electrode which generate a mutual discharge through the main discharge space. A channel space is defined by outer walls of the protruding portions on either side of the main discharge space, and an external light absorbing layer covers the channel space.
Abstract:
The present invention relates to a cosmetic composition comprising a composite prepared by molecularly encapsulating a fermented sumac (Rhus javanica L.) extract with a cyclodextrin derivative as an active ingredient. More particularly, the present invention relates to a skin-whitening or antioxidant composition comprising a composite prepared by molecularly encapsulating a fermented sumac (Rhus javanica L.) extract with hydroxypropyl-β-cyclodextrin as an active ingredient. The composition of the present invention exhibits better skin-whitening and antioxidant effect than the existing cosmetic composition comprising 4-n-butylresorcinol, while having better stability. Further, since it is originated from natural materials with much less skin irritation, it can be effectively used to prepare functional skin-whitening and antioxidant cosmetic products.
Abstract:
The present invention relates to a method for preparing high-purity ginsenoside Rd using Lactobacillus casei, more particularly to a method for preparing high-purity ginsenoside Rd using Lactobacillus casei and an anti-wrinkle cosmetic composition comprising the high-purity ginsenoside Rd as an active ingredient. Since the method of the present invention is simple and can economically prepare high-purity ginsenoside Rd extract, it may make the best use of anti-wrinkle effect of the ginsenoside Rd. In addition, the present invention can increase stability and decrease skin irritation by preparing water-soluble molecular capsule of high-purity ginsenoside Rd, thereby having advantage of increasing applicability ginsenoside Rd radically.
Abstract:
A plasma display panel is disclosed. The plasma display panel has discharge cells which each have a range of widths between the first substrate and the second substrate. In addition, the discharge spaces are separated by non-discharge spaces having heights substantially the same as the heights of the discharge spaces.
Abstract:
A plasma display panel (PDP) includes: a front substrate facing a rear substrate; first and second discharge enhancement layers disposed between the front and rear substrates and arranged on both sides of a main discharge space; first and second barrier ribs respectively formed on the first and second discharge enhancement layers and defining first and second asymmetric stepped spaces along with the first and second discharge enhancement layers; a scan electrode and a common electrode inducing a mutual discharge in the main discharge space; an address electrode generating an address discharge along with the scan electrode and extending in a direction to intersect the scan electrode; a phosphor layer formed in at least the main discharge space; and a discharge gas filled in the main discharge space and the first and second stepped spaces. Accordingly, the PDP having high efficiency may operate with low power and obtain high luminous brightness.