Abstract:
One exemplary embodiment of this disclosure relates to an article having a multi-layer wall structure having an embedded sensor. Further, the multi-layer wall structure and the sensor are bonded together.
Abstract:
An article includes a substrate and a coating on the substrate. The coating includes a compound of aluminum, boron and nitrogen in a continuous chemically bonded network having Al—N bonds and B—N bonds. Also disclosed is an article wherein the substrate is a plurality of fibers and the coating is a conformed coating of a compound of aluminum, boron and nitrogen having Al—N bonds and B—N bonds. The fibers are disposed in a matrix. Also disclosed is a method of protecting an article from environmental conditions. The method includes protecting a substrate that is susceptible to environmental chemical degradation using a coating that includes a compound of aluminum, boron and nitrogen having Al—N bonds and B—N bonds.
Abstract:
A feedstock for an additive manufacturing process includes a pre-ceramic polymer intermixed with a base material. A method of additive manufacturing includes melting and pyrolizing a feedstock containing metal and a pre-ceramic polymer. An article of manufacture includes an additive manufacturing component including a pyrolized feedstock.
Abstract:
An erosion resistant and hydrophobic article includes a core that has a first hardness and a surface on the core. The surface includes a plurality of geometric features that have a second, greater hardness. The geometric features define a surface porosity by area percent and a corresponding surface solidity by area percent. The surface includes a ratio of the surface solidity divided by the surface porosity that is 1.8 or greater. The geometric features and the ratio establish the surface to be hydrophobic, and the second, greater hardness and the ratio establish an erosion rate of the surface that is equal to or less than an erosion rate of the core under identical erosion conditions.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix of barium-magnesium alumino-silicate or SiO2, a dispersion of silicon oxycarbide particles in the matrix, and a dispersion of particles, of the other of barium-magnesium alumino-silicate or SiO2, in the matrix.
Abstract:
An article includes a silicon oxycarbide-based layer that has Si, O, and C in a covalently bonded network. The silicon oxycarbide-based layer has first and second opposed surfaces. A calcium-magnesium alumino-silicate-based layer is interfaced with the first surface of the silicon oxycarbide-based layer.
Abstract:
A method for fabricating a metal-ceramic composite article includes a) depositing at least one layer of a powdered material onto a target surface, where the powdered material includes at least one metal and an energy-beam responsive ceramic precursor, and b) densifying the at least one metal and chemically converting at least a portion of the energy-beam responsive ceramic precursor to a ceramic material to form a densified layer by directing an energy-beam onto the at least one layer.
Abstract:
A method of fabricating a ceramic article includes serially depositing first, second and third different materials within a porous structure using, respectively, first, second and third different processing techniques, to form a ceramic-containing article. The first, second and third materials differ by at least one of composition and microstructure. The first, second and third different processing techniques differ by at least one of modes of delivery of precursor materials into the porous structure and formation mechanisms of the first, second and third different materials from the precursor materials. The deposition of the first material is controlled such that there are first residual voids in the porous structure in which the second material is deposited. The deposition of a second material is controlled such that there are second residual voids in the porous structure in which the third material is deposited.