Abstract:
An abradable coating for application to a gas turbine engine part is formed from a titanium aluminide alloy, a filler material, and porosity. The coating may be applied to a part such as a casing made from a titanium alloy.
Abstract:
A turbine engine system includes a turbine engine component having an airfoil portion and a tip, which turbine engine component having a MAXMET composite bonded to the tip. The MAXMET composite has MAX phases in a metal matrix.
Abstract:
A seal is formed of a matrix and includes hard particles. The matrix has a shear strength of greater than or equal to 200 psi and less than or equal to 2000 psi. A gas turbine engine is also disclosed.
Abstract:
A method of manufacturing a fiber reinforced coating. The method includes providing a substrate and plasma spraying a ceramic matrix having fibers encapsulated in a precursor material onto the substrate.
Abstract:
An air seal system for a rotor blade assembly of a gas turbine engine includes a substrate. An optional ceramic interlayer may be disposed on an optional bond coat deposited on the substrate. An erosion resistant thermal barrier coating (E-TBC) layer is disposed on the ceramic interlayer (if present) or on the bond coat, or on the substrate. An abradable layer is disposed on the erosion resistant thermal barrier coating (E-TBC) layer.
Abstract:
A corrosion resistant aluminum alloy abradable coating for use as a seal material consists of a porous base metal alloy layer containing corrosion inhibiting metal compounds dispersed throughout the porous base metal alloy layer. A method of forming a corrosion resistant aluminum alloy abradable coating consists of co-thermal spraying aluminum alloy powder plus polymer powder and particles containing corrosion inhibiting metal compounds.
Abstract:
A component for high temperature applications includes a substrate and a layer of an aluminum-containing MAX phase material and another material applied to the substrate.
Abstract:
A gas turbine engine component according to an exemplary aspect of the present disclosure includes, among other things, a body having a first outer face meeting a second outer face at an intersection, the body having a plurality of apertures extending from an opening in the first outer face to an opening on the second outer face; and a coating filling at least a portion of the plurality of apertures.
Abstract:
A method of preventing transfer of metal of a gas turbine rotor blade having a metal tip to a blade outer air seal coating on a gas turbine case includes forming a coating on the metal tip. The coating comprises a bond coat layer on the metal tip and a ceramic filled metallic layer having a ceramic component in a matrix of a metal MCr, MCrAl, MCrAlY or a refractory modified MCrAlY where M is nickel, cobalt, iron or mixtures thereof.