Abstract:
Hollow fan blades for turbo fan gas turbine engines are formed of two separate detail halves (30a;30b). Each detail half (30a) has a plurality of cavities (40) and ribs (70) machined out to reduce weight. These detail halves are subsequently bonded and given an airfoil shape in the forming operation. In the present invention, the ribs (70) are oriented and biased to provide stiffness as needed in different sections of the fan blade with smooth transitions between regions. In particular, ribs (72a) in a first region (A) of the detail substrate (61) are formed so as not to be parallel to ribs (72c) in a second region (B) of the substrate. The result is a blade with good protection from a wide spectrum of external threats.
Abstract:
A stator vane assembly 30 for a rotary machine is disclosed. The stator vane assembly includes an array of stator vanes 44 and an inner air seal 46. Various construction details which damp vibrational stresses in the vanes are developed. In one embodiment, the stator vanes slidably engage the inner air seal. The inner air seal is urged radially into sliding contact with the vanes at the inner ends 52 of the vanes by a resilient device such as a radial spring member 70. In one detailed embodiment, the stator vane has at least two airfoils 55b,c which are circumferentially spaced at their inner ends leaving a circumferential gap therebetween.
Abstract:
An airfoil for a turbine engine includes an airfoil body with a cover mounting support, a first cover, and a second cover. The airfoil body includes a solid perimeter portion surrounding a recess formed into at least one of a suction side and a pressure side of the airfoil body, while the cover mounting support extends through the recess. The first cover can be engaged with a first edge of the recess and joined to a first portion of the cover mounting support by a first stir weld. The second cover can be engaged with a second edge of the recess, and joined to a second portion of the cover mounting support by a second stir weld.
Abstract:
A fan blade comprises an airfoil portion and a sheath portion. The sheath portion has a sheath head section, a first sheath flank, and a second sheath flank, both flanks extending chordwise from the forward sheath section. The sheath portion is bonded to the airfoil portion such that the sheath head section covers the forward airfoil edge, defining a blade leading edge. The first sheath flank covers a portion of the first airfoil surface proximate the airfoil forward edge, jointly defining a blade suction surface. The second sheath flank covers a portion of the second airfoil surface proximate the airfoil forward edge, jointly defining a blade pressure surface. The first metallic material is an aluminum alloy containing between about 0.5 wt% and about 3.0 wt% of lithium.
Abstract:
A shrouded airfoil may have a suction surface and a pressure surface. An at least first suction surface shroud may be disposed on the suction surface and an at least first pressure surface shroud may be disposed on the pressure surface. The at least first suction surface shroud may include a first and second contoured surface and a first mating face. The first contoured surface may have a first substantially concave portion and a first substantially convex portion. The second contoured surface may have a second substantially concave portion and a second substantially convex portion. The at least first pressure surface shroud may include a third and fourth contoured surface and a second mating face. The third contoured surface may have a third substantially concave portion and a third substantially convex portion. The fourth contoured surface may have a fourth substantially concave portion and a fourth substantially convex portion.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan section including a fan with a plurality of fan blades rotatable about an axis. Each of the plurality of fan blades includes a mid-span shroud and a speed change device in communication with the fan.
Abstract:
A rotary blade is provided that includes a root, an airfoil, and a tip insert. The airfoil is attached to the root, and has a suction side surface, a pressure side surface, a leading edge, a trailing edge, a tip, and a slot disposed within the tip. The slot extends in a chordwise direction between the leading edge and trailing edge. The tip insert has a base end and a rub end. The base end of the tip insert is disposed within the slot. The rub end of the tip insert extends radially outward from the airfoil tip.