Abstract:
A wind turbine generator is disclosed herein. In a described embodiment, the wind turbine generator comprises an electrical generator 101 configured to generate AC signals, a plurality of power converters 110,112,111 operated by a gating signal with each power converter configured to convert the AC signals from the electrical generator 101 into fixed frequency AC signals. The wind turbine generator further comprises a controller configured to enter a fault mode when a grid voltage falls outside an acceptable threshold, and during the fault mode the controller is configured to provide a reactive current reference dependant on a grid voltage distant from the wind turbine generator. A method of controlling a wind turbine generator is also disclosed.
Abstract:
A variable speed wind turbine is provided. The wind turbine comprises a generator, a power converter for converting at least a portion of electrical power generated by the generator, an energy management arrangement coupled to the power converter, the energy management arrangement comprises an energy storage unit, and a controller. The controller is adapted to detect a power imbalance event and to transfer at least a portion of excess electrical energy generated by the generator to the energy storage unit to be stored therein when the power imbalance event is detected.
Abstract:
The invention relates to a control system for compensating undesired electrical harmonics on an electrical grid. Part of the control system referred to as a harmonic compensator is operatively connected with a power inverter of a power producing unit supplying power to the grid. Another part of the control system, referred to as an impedance detector, is operatively connected to a point of coupling to which point one or more power producing units are connected. The impedance detector is configured to scan impedances as a function of frequency to identify frequencies of impedance peaks which peaks are indicative of resonance frequencies. The determined resonance frequencies are supplied to one or more the harmonic compensators. A compensator determines control signals to the inverter which causes the inverter to inject compensation currents to the grid which currents will damp currents oscillating at or close to the determined resonance frequency.
Abstract:
A method of operating a wind turbine is disclosed, the wind turbine comprising a power generator, a machine-side converter connected to the power generator, a line-side converter connected to a power grid through associated power components, and a DC-link connected between the machine-side converter and the line-side converter. The method includes monitoring the power grid for overvoltage events, and upon detecting an overvoltage event: (1) disabling active operation of the machine-side converter and the line-side converter, (2) enabling an AC load dump connected between the machine side converter and the power generator in order to dissipate power output from the power generator, (3) waiting for a waiting period, and (4) enabling active operation of the line-side converter and the machine converter when the overvoltage event ends within the waiting period.
Abstract:
A variable speed wind turbine is provided. The variable speed wind turbine comprises a generator, a power converter for converting at least a portion of electrical power generated by the generator, the power converter comprising a generator-side converter, a grid-side converter and a DC (direct current) link therebetween, a power dissipating unit operatively coupled to the DC-link, and a controller. The controller is adapted to receive a request to reduce power output from the wind turbine, determine a feed forward power signal based on a reference generator power and a desired turbine power, and operate the power dissipating unit based on the feed forward power signal.
Abstract:
A wind turbine is provided. The wind turbine comprises a generator, a power converter for converting at least a portion of electrical power generated by the generator, an energy dissipating unit and a controller. The power converter comprises a generator-side converter, a grid-side converter and a DC (direct current) link there between. The energy dissipating unit is operatively coupled to the DC-link. The controller is adapted to activate the energy dissipating unit to dissipate energy from the DC-link in response to a shutdown request.
Abstract:
A power dissipating arrangement for dissipating power from a generator in a wind turbine is provided. The generator comprises a plurality of output terminals corresponding to a multi-phase output. The power dissipating arrangement comprises a plurality of dissipating units, a plurality of semiconductor switches, a trigger circuit for switching the semiconductor switches and a control unit for controlling the operation of the trigger circuit, thereby controlling the switching of the semiconductor switches. Each dissipating unit includes a first terminal and a second terminal. The first terminal of each dissipating unit is coupled to each output terminal of the generator. Each semiconductor switch includes a first terminal anode, a second terminal and a gate terminal. The first terminal of each semiconductor switch is coupled to the second terminal of each dissipating unit and the second terminal of the semiconductor switch is coupled to the second terminal of another dissipating unit, such that the second terminal of each dissipating unit is coupled to the first terminal of one semiconductor switch and the second terminal of another semiconductor switch. The trigger circuit is coupled to the gate terminal of the plurality of the semiconductor switches for switching the semiconductor switches.
Abstract:
A variable speed wind turbine is provided. The variable speed wind turbine comprises a generator, a power converter for converting at least a portion of electrical power generated by the generator, the power converter comprising a generator-side converter, a grid-side converter and a DC (direct current) link therebetween, a power dissipating unit operatively coupled to the DC-link, and a controller. The controller is adapted to receive a request to reduce power output from the wind turbine, determine a feed forward power signal based on a reference generator power and a desired turbine power, and operate the power dissipating unit based on the feed forward power signal.