Abstract:
This disclosure relates to methods and systems for implementing a visit- based loyalty rewards program. Disclosed is a system that includes location detection devices placed throughout a retail store that are used in conjunction with a mobile device carried by a customer to determine the presence, duration, path, and location of the customer device, and hence the customer, in the retail store. A retail store server is used to store customer information, including the customer visits, the length of customer visits, and the path taken by the customer through the retail store. A loyalty reward is calculated based upon at least one customer visit and at least one customer purchase. The loyalty reward is then awarded to the customer.
Abstract:
A registration-based user-interface architecture includes a retail shopping facility operated on behalf of an enterprise having a plurality of physically-discrete items disposed therein that are offered for retail sale. A control circuit maintains a record (for example, in a blockchain ledger) of a particular customer's purchase of a particular one of these items and also provides an opportunity to that particular customer to resell that particular item via a sales platform operated on behalf of the enterprise. By one approach the control circuit is further configured to interface with the particular customer to register that customer's purchase of this particular item. That interface may be conducted, for example, via a point-of-sale interface, a browser-based interface, a mobile device app-based interface, and so forth. By one approach this registration must necessarily occur within a predetermined amount of time from when the customer purchases the item.
Abstract:
In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
Abstract:
Systems, apparatuses and methods are provided herein for unmanned flight optimization. A system for unmanned flight optimization comprises a flight system configured to provide locomotion to an unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit coupled to the flight system and the sensor system. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, detect condition parameters of the unmanned aerial vehicle based on the sensor system, determine whether to station the unmanned aerial vehicle based on the task profile and the condition parameters, and deactivate the flight system of the unmanned aerial vehicle while the unmanned aerial vehicle performs the task.
Abstract:
In some embodiments, methods and systems of dispensing an insecticide to defend a crop-containing area against crop-damaging pests include an unmanned vehicle having a sensor that detects a crop-damaging pest in the crop-containing area and captures pest detection data, and an insecticide output device including at least one insecticide directed at the pest. The unmanned vehicle transmits the captured pest detection data via the network to the computing device and, in response to receipt of the captured pest detection data via the network from the unmanned vehicle, the computing device accesses an electronic database to determine an identity of the at least one pest. Based on the determined identity of the crop-damaging pest, the computing device transmits a control signal to the unmanned vehicle to cause the insecticide output device of the unmanned vehicle to dispense one or more insecticides specific to the identified crop-damaging pest.
Abstract:
In some embodiments, a receptacle for storing one or more products discarded by a consumer includes a side wall defining a receptacle opening for receiving a product, a closed bottom end, and an interior cavity configured to retain the product. The receptacle may include a product detecting sensor configured to detect the product proximate the receptacle opening, a product weight sensor configured to detect a weight of the product retained in the interior cavity, and a control unit in communication with the product detecting sensor and the product weight sensor. The control unit may be configured to obtain sensor data from the product detecting sensor and the product weight sensor, identify the product based on the obtained sensor data, and add the identified product to a shopping list of the consumer. Methods of adding a product discarded by a consumer to a shopping list of the consumer are also described.
Abstract:
Systems, apparatuses, and methods are provided herein for providing package release for an unmanned aerial system. An apparatus for releasing packages for retrieval by an unmanned aerial system comprises a plurality of arms configured to surround a plurality of packages stacked vertically in an extended position, a plurality of powered hinges at a base of each of the plurality of arms, and a control circuit coupled to the plurality of powered hinges. The control circuit being configured to: determine a height for a first lowered position for the plurality of arms at which the plurality arms do not obstruct an unmanned aerial vehicle from coupling with a coupling structure on a first package of the plurality of packages positioned at a top of the plurality of packages, and cause the plurality of powered hinges to pivot the plurality of arms from the extended position to the first lowered position.
Abstract:
In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
Abstract:
Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the task profile and the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
Abstract:
Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.