Abstract:
The present invention is directed to a method for coating a surface of a medical device with a coating composition. The method involves chilling the surface to be coated to below the freezing point of at least one solvent contained in the composition. This coating composition is applied to the chilled surface, and a portion of the coating composition is allowed to freeze onto the surface. The surface can then be heated (either by the application of heat from an external source, by allowing to heat by ambient air) to above the freezing point of the solvent in the coating composition to allow the solvent to thaw and be removed, thereby forming a smooth, uniform coating on the surface of the medical device.
Abstract:
A process for the surface treatment of a part wherein it comprises subjecting the surface of said part in an inert atmosphere to the action of a hot gaseous arc plasma, and followed by the immediate cooling of the thus treated surface by projecting on to the same a cooling liquid at a temperature close to its saturation point which is a temperature whose variation from the saturation temperature does not exceed 15.degree. C.
Abstract:
A process of forming a film of a fluorine-containing resin on a surface of a metallic substrate, wherein the substrate is coated with the fluorine-containing resin and is placed in a furnace vacuumized to a predetermined degree within a range containing the order of 10.sup.-3 Torr. The vacuumized atmosphere in the furnace is heated at a predetermined heating temperature of the range of from about 330.degree. C. to about 420.degree. C. for a predetermined period of time, whereupon the hot vacuumized atmosphere in the furnace is allowed to cool spontaneously with a vacuum of preferably the same degree maintained in the furnace until the temperature in the furnace reaches a predetermined pre-quenching temperature lower than the heating temperature and, thereafter, an inert gas at ambient temperature is introduced into the furnace for quenching the coating on the substrate.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Erwärmung eines Metallbandes (1) in einem Konvektionsofen (3), insbesondere zum Zwecke der Trocknung einer zuvor auf das Metallband (1) aufgebrachten Beschichtung. Die Vorrichtung ist erfindungsgemäß dadurch gekennzeichnet, dass in Transportrichtung des Metallbandes (1) vor dem Konvektionsofen (3) eine Einrichtung (4) zur induktiven Vorerwärmung des Metallbandes (1) angeordnet ist. Ferner betrifft die Erfindung ein Verfahren zur Erwärmung eines Metallbandes (1), insbesondere zum Zwecke der Trocknung einer zuvor auf das Metallband (1) aufgebrachten Beschichtung.
Abstract:
Methods and processes for applying powder coat faux finishes, and power coat materials associated with such methods and processes are provided. Processes employ one or more partial powder coat layers along with physical texturing techniques to provide a variety of powder coated faux finish effects. Methods may utilize standard powder coating formulations in contrasting combinations to form suitable faux finishes. Faux finishing techniques using powder coating procedures may reproduce effects previously only obtainable with wet techniques, such as, for example, sponging, color washing, rag rolling, marbleizing, faux granite, strié, antiquing, verdigris, wood graining, weathered patina, etc. Kits of materials, including powder coating materials and physical texturing equipment suitable to reproduce such faux finishes are also provided.
Abstract:
A method is provided for manufacturing a humidity sensing material. Particles of a trivalent rare earth hydroxide or oxide (such as lanthanum hydroxide) are mixed with particles of barium oxide and titanium dioxide in specified proportions. The particle mixture is heated to generate a sintered mixture that is milled. The resulting milled particles are mixed with glass particles, an organic surfactant, a solvent, an organic vehicle, and an alkali hydroxide. The resulting liquid mixture is deposited as a layer thereof onto a substrate. The substrate and layer thereon are processed to remove liquid portions of the liquid mixture. Such liquid removal processing includes at least one cycle of heating the layer followed by a corresponding cycle of cooling the layer in a nitrogen atmosphere containing less than 25 parts per million of oxygen.
Abstract:
An apparatus for treating sheet-like material, in particular panels, film or foil, the apparatus having at least one bar-shaped or rod-shaped strip which is disposed so as to be transverse to the longitudinal direction of the sheet-like material, the sheet-like material being moved past the strip in the longitudinal direction, wherein the strip, at least across part of the external face thereof that faces the sheet-like material, is composed of a porous fluid-permeable metal foam, and wherein an arrangement for conveying a treatment fluid through the metal foam toward the sheet-like material is provided.
Abstract:
The present invention is directed to a method for coating a surface of a medical device with a coating composition. The method involves chilling the surface to be coated to below the freezing point of at least one solvent contained in the composition. This coating composition is applied to the chilled surface, and a portion of the coating composition is allowed to freeze onto the surface. The surface can then be heated (either by the application of heat from an external source, by allowing to heat by ambient air) to above the freezing point of the solvent in the coating composition to allow the solvent to thaw and be removed, thereby forming a smooth, uniform coating on the surface of the medical device.
Abstract:
An apparatus and method for curing a coating applied to an optical fiber. A water-jacketed UV lamp is provided adjacent a first reflector. An optical fiber is drawn between a second reflector opposite the first reflector and at least one quartz plate, while a cross flow of a cooling gas is passed around the optical fiber. Apertures may be formed in the second reflector for passing the cooling gas while the optical fiber is passed between the second reflector and the at least one quartz plate. Alternatively, two or more quartz plates may be provided and the cooling gas and the optical fiber passed between the quartz plates. The cooling gas experiences laminar flow.