Abstract:
Process for making ozone comprising passing substantially pure carbon dioxide between electrodes having a sufficient voltage difference between them to cause a corona discharge across them.
Abstract:
A plasma generator 1 includes a first electrode 12 provided in a gas storage section 5, and a second electrode 13 provided in such a manner that at least a portion coupled with the first electrode 12 comes into contact with a liquid 17 in a liquid storage section 4. Electrical discharge is caused between the first electrode 12 and the second electrode 13 so that plasma is produced in a gas region in the liquid 17 in the liquid storage section 4, and hydroxyl radical is produced from water contained in the liquid 17 and oxygen contained in the gas.
Abstract:
A method of generating ozone by applying a silent discharge to oxygen as a first raw material gas, and an oxide compound gas, as a second raw material gas, in which excited light, excited and generated by a discharge in the oxygen and the oxide compound gas, dissociates the oxide compound gas, or excites the oxide compound gas, accelerating dissociation of the oxygen and generation of ozone. In this way, ozone generation efficiency is raised.
Abstract:
An ozone generator for generating ozone by applying a specified process to oxygen by discharge includes a first raw material gas supply unit for supplying the oxygen as a first raw material gas, and a second raw material gas supply unit for supplying an oxide compound gas as a second raw material gas, in which, by excited light, excited and generated by a discharge in the oxygen and the oxide compound gas, the oxide compound gas is dissociated, or the oxide compound gas is excited accelerating dissociation of the oxygen, and ozone is generated. In this way, ozone generation efficiency is raised.
Abstract:
A silent discharge plasma apparatus includes a dielectric member, a pair of electrodes opposed to each other across the dielectric member and an alternating-current source applying an alternating-current voltage between the electrodes and causing a discharge. A gas is supplied to a discharge space, where discharge occurs, and a plasma is produced. At least one of the electrodes includes a conductive power feeding thin film on the dielectric member. When the dielectric member is destroyed and an arc discharge develops between the electrodes, the power feeding thin film is eliminated or oxidized, and the arc discharge is stopped.
Abstract:
A process for conditioning an ozone gas recycle stream in an ozone pulp bleaching process, wherein the level of carbon dioxide in the recycle stream is controlled to allow full capacity operation of the ozone generator. Carbon dioxide concentration is identified over the relevant operational ranges and maximum concentration is identified for full capacity/optimum efficiency operation. Specific methods are described for controlling carbon dioxide concentration including purging a portion of the recycle stream, counter-current scrubbing of the recycle stream with an alkaline solution and passing the recycle stream through an adsorbent material. Contaminants entering the system also may be reduced by directing the purged recycle stream, which is relatively oxygen rich, into the dewatering press where pulp consistency is increased. In this manner nitrogen surrounding the pulp is displaced by oxygen and thus, does not enter the bleaching/ozone system with the pulp.
Abstract:
There is provided a highly efficient and compact ozone generating apparatus in which a very short air gap of about 0.2 mm is formed at high accuracy. Non-discharge portions are dispersed and disposed to cover an entire discharge space, or a spacer is provided to form the non-discharge portion. Further, an elastic body is mounted on a back face of an electrode, thereby enhancing an air gap accuracy of the discharge space.
Abstract:
Ozonizer (10) which supplies a feed gas to ozone generating cell (11) under application of a high voltage and which delivers an ozone gas through an ozone gas transport path (consisting of pipes (14) and (15)) as it has been generated in said ozone generating cell (11) is characterized in that the ozone gas transport path is furnished with means for removing at least one of NOx, HF and SOx (in the drawings, the means is for removing NOx) and that the ozone gas from the ozone generating cell (11) is passed through said removing means, whereby at least one of NOx, HF and SOx in said ozone gas is removed before it is delivered to a subsequent stage. The product ozone is not contaminated with Cr compounds at all or insufficiently contaminated to cause any practical problems in the fabrication of highly integrated semiconductor devices. Alternatively, ozonizer (10) which comprises an ozone generating cell (11) having an inlet (8) for supplying a feed gas, high voltage applying means (35) and an outlet (29) for discharging the ozone generated, and ozone delivery paths (30) and (31) for delivering the generated ozone is characterized in that oxygen (1) supplemented with 10-20 vol % of carbon dioxide and/or carbon monoxide (2) is used as the feed gas. The thus produced ozone is significantly low in the level of Cr compounds and, hence, can suitably be used in the formation of metal oxides, in particular, silicon oxide.