Abstract:
Provided is a double braid rope structure which is provided with an inner core and an outer cover. In the double braid rope structure (10), the inner core (3) includes high strength and high modulus fibers with a yarn tenacity of 20 cN/dtex or higher and a yarn elastic modulus of 400 cN/dtex or higher, and has a ratio of yarn length/rope length of 1.005 or more and 1.200 or less, the rope length being determined as a length of a cut section (V) cut to a certain length from the rope structure (10), and the yarn length being determined as an average value of lengths of yarns constituting the inner core of the cut section (V).
Abstract:
Methods are provided for forming a spliced eye (220) of a sling (222) made from a rope that includes a core rope (37) and includes a braided sheath (398).
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
Elevator coated ropes or belts are disclosed. The coated rope or belt may include at least one cord and a jacket retaining the at least one cord. The cord may include a plurality of filaments. The filaments are free of second-order helical structure. In a first embodiment, the filaments includes at least one inner filament and a plurality of outer filaments surrounding the at least one inner filament. The outer filaments are bunched together by forming a first-order helical structure through the length of the cord. In a second general embodiment, the filaments are free of both first- and second-order helical structures. The filaments are bunched together by a restraining loop or adhesive at one or more locations along the length of the cord. Methods of making the tension cord are also disclosed.
Abstract:
The present invention relates to a method of accomplishment of a hybrid cord comprising an inner layer (1) in steel cord, an intermediate layer (2) in a high module and high toughness fibre and an outer layer (3) in a Polyolefin fibre. The present invention also refers to its application in an 8 (4×2) cords braided hybrid cable or any other type of hybrid cable presenting another construction, in braided or twisted cables.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.
Abstract:
This invention relates generally to cable assemblies, and more particularly to flexible cable assemblies of the type used in automobiles for transmitting rotary or linear motion along a predetermined path. In a particular aspect, the present invention relates to abrasion-resistant fluorocarbon polymer composites, such as polytetrafluoroethylene ("PTFE") composites, having an unexpectedly high frictional efficiency under high load conditions and after long cycle times. The present invention relates to abrasion-resistant, anti-friction tubing formed from such composites, and to uses of such tubing as a liner for flexible, motion transmitting cable assemblies.