Abstract:
Equipment for continuous regulation of the flow rate for a reciprocating compressor, provided with at least one compression chamber (1) in which is slidably inserted a piston means (101) movable with a reciprocating motion, at least one inlet valve (2) for the fluid to be compressed and at least one outlet valve (4) for the compressed fluid being provided in the said chamber, the said outlet valve (4) being connected to a storage reservoir (10) for the compressed fluid, and the said inlet valve (2) being provided with translation means (502, 512) which can act on the obturator (302) of the said valve (2), the said translation means (502, 512) being movable in a direction perpendicular to the plane of the said obturator (302), and interacting with actuator means (3, 103, 203) which are movable in the said direction with a reciprocating motion by means of suitable operating means (303, 403); the said operating means (303, 403) make it possible to control the velocity of displacement of the said actuator means (3, 103, 203) in both directions of their movement, means (42) for detecting the position of the said actuator means (3, 103, 203), means (43) for detecting the position of the piston in the compression chamber and means (41) for detecting the pressure in the reservoir being provided, the said detection means (42, 43, 41) and the said operating means (303, 403) of the actuator means (3, 103, 203) being connected to a central processing unit (40).
Abstract:
A processing chamber is connected to a lock chamber. For evacuating the lock chamber and/or the processing chamber a vacuum pump system is provided. The latter comprises a vacuum pump equipment having at least one vacuum pump. Further, the vacuum pump system comprises a valve device for connection to the lock chamber as well as a controller. For noise reduction, a cyclically occurring operating parameter is determined by means of the controller. From said parameter it is determined at which point in time the valve is opened such that temporally before the opening of the valve the rotational speed of at least one of the vacuum pumps can be reduced. This results in a considerable noise reduction at continuing good pump-out times.
Abstract:
A denting device for forming a predetermined pattern on a surface near a discharge hole and an intake hole of a valve plate for a compressor includes: a seating jig to which the valve plate is fixed; a processing pin in which a pressing part for pressing the valve plate is formed at a distal end thereof; and a moving unit which is disposed on an upper portion of the seating jig, horizontally moves the processing pin at a constant speed while allowing the processing pin to vertically reciprocate at a constant speed, so as to form the pattern on the valve plate.
Abstract:
The invention relates to a pump for pumping a fluid, including an inlet, an outlet, and a pumping chamber, wherein a valve is arranged between the inlet and the pumping chamber or between the pumping chamber and the outlet. The valve includes a valve body having a valve seat pointing in the direction of the outlet, and a valve member that interacts with the valve seat, wherein the valve member is loaded under pre-loading against the valve seat into a closed position of the valve and allows fluid to pass through in a pumping direction due to the valve member lifting off against the pre-load, wherein the valve body is accommodated in a receptacle of a pump part. A pump for which the development of noises and vibrations is reduced in that the valve body can move axially relative to the receptacle that accommodates the valve body.
Abstract:
Equipment for continuous regulation of the flow rate for a reciprocating compressor, provided with at least one compression chamber (1) in which is slidably inserted a piston means (101) movable with a reciprocating motion, at least one inlet valve (2) for the fluid to be compressed and at least one outlet valve (4) for the compressed fluid being provided in the said chamber, the said outlet valve (4) being connected to a storage reservoir (10) for the compressed fluid, and the said inlet valve (2) being provided with translation means (502, 512) which can act on the obturator (302) of the said valve (2), the said translation means (502, 512) being movable in a direction perpendicular to the plane of the said obturator (302), and interacting with actuator means (3, 103, 203) which are movable in the said direction with a reciprocating motion by means of suitable operating means (303, 403); the said operating means (303, 403) make it possible to control the velocity of displacement of the said actuator means (3, 103, 203) in both directions of their movement, means (42) for detecting the position of the said actuator means (3, 103, 203), means (43) for detecting the position of the piston in the compression chamber and means (41) for detecting the pressure in the reservoir being provided, the said detection means (42, 43, 41) and the said operating means (303, 403) of the actuator means (3, 103, 203) being connected to a central processing unit (40).
Abstract:
The invention relates to a pump for pumping a fluid, comprising an inlet, an outlet, and a pumping chamber, wherein a valve (17) is arranged between the inlet and the pumping chamber or between the pumping chamber and the outlet, wherein the valve (17) comprises a valve body (30), which has a valve seat (32) pointing in the direction of the outlet, and a valve element (31a) that interacts with the valve seat (32), wherein the valve element (31a) is loaded under pre-loading against the valve seat (32) into a closed position of the valve (17) and allows fluid to pass through in the pumping direction due to the valve element (31a) lifting off against the pre-load, wherein the valve body (30) is accommodated in a receptacle (15c) of a pump part (15). A pump for which the development of noises and vibrations is reduced is created according to the invention in that during the operation of the pump the valve body (30) can move axially relative to the receptacle (15c) that accommodates the valve body.
Abstract:
Equipment for continuous regulation of the flow rate of fluid in a reciprocating compressor which has a compression chamber with a piston reciprocally movable therein. The compression chamber has an inlet valve and an outlet valve which delivers fluid to a reservoir. A translation device is movable to open the valve and allow closing of the valve. An actuator engages the translation device and includes a rod. The rod has a magnitizable central element located between solenoids of an electromechanical device. The central element is located in a prefixed position with respect to the solenoids under the resilient loading of a resilient device. Detectors are provided for detecting the position of the piston, the pressure in the reservoir and the position of the actuator.
Abstract:
The invention relates to a pump for pumping a fluid, including an inlet, an outlet, and a pumping chamber, wherein a valve is arranged between the inlet and the pumping chamber or between the pumping chamber and the outlet. The valve includes a valve body having a valve seat pointing in the direction of the outlet, and a valve member that interacts with the valve seat, wherein the valve member is loaded under pre-loading against the valve seat into a closed position of the valve and allows fluid to pass through in a pumping direction due to the valve member lifting off against the pre-load, wherein the valve body is accommodated in a receptacle of a pump part. A pump for which the development of noises and vibrations is reduced in that the valve body can move axially relative to the receptacle that accommodates the valve body.
Abstract:
The invention relates to a method for the early detection of damage to valves in oscillating displacement pumps comprising at least three cylinders with or without a common pump head, by signal-based evaluation of measured pressure and structure-borne noise signals, digitalisation of the pressure signals, calculation of correlation coefficients by means of covariance analysis using the distribution of the structure-borne noise on each cylinder in the absence of a common pump head, or using fictive oscillation acceleration signals for each cylinder and associating valve damage to a cylinder in the presence of a common pump head, and triggering an alarm if pre-defined threshold values for the correlation coefficients are exceeded or not reached. The invention also relates to oscillating displacement pumps with integrated sensors for use in said method.