Abstract:
The invention relates to a piston for an internal combustion engine made of an iron-based material, comprising a piston head and a piston skirt, the piston head comprising a piston base, a peripheral top land and a peripheral annular part comprising annular grooves. According to the invention, at least one annular groove comprises at least one insert made of an zinc-based material.
Abstract:
The present invention relates to the use of corrosion resistant alloys in fluid ends to prolong the life of a well service pump. One embodiment of the present invention provides a method of providing a fluid end that has a corrosion resistant alloy having a fatigue limit greater than or equal to the tensile stress on the fluid end at maximum working pressure in the fluid end for an aqueous-based fluid; installing the fluid end in a well service pump; and pumping the aqueous-based fluid through the fluid end.
Abstract:
A method for manufacturing a sliding part for a hermetic compressor is disclosed. Since the abrasion resistance and corrosion resistance of the sliding part is increased, the energy consumption efficiency is improved and the performance of the compressor can be enhanced. In addition, since the manufacturing process is shortened, the production cost can be reduced and the manufacturing time can be reduced. Moreover, since the thickness change of the sliding part is minimized, the defective rate of the part size can be reduced and its quality can be improved.
Abstract:
This invention relates to a high temperature-resistant piston head. The piston head includes a first portion formed of a first material of heat-resistant steel alloy and the second portion is formed of a second a material of steel alloy that may be the same or may or different from the first material. The first and second portions are joined by a friction weld to form the assembled piston head. The heat-resistant steel alloy includes about 0.1 to about 0.5 wt % carbon, up to about 0.6 wt % manganese, about 4.0 to about 6.0 wt % chromium, about 0.45 to about 0.65 wt % molybdenum, up to about 0.5 wt % nickel and the balance iron and incidental impurities. In one form the second material includes about 0.30 to about 0.55 wt % carbon, about 0.4 to about 1.10 wt % manganese, about 0.40 to about 1.25 wt % chromium, about 0.15 to about 0.45 wt % molybdenum, up to about 0.4 wt % silicon, up to about 2 wt % Ni and greater than about 90 wt % iron.
Abstract:
A hardfacing for downhole progressing cavity pumps is disclosed as well as a method for producing same. The hardfacing consists of a metal carbide layer applied to the ferrous pump rotor body by way of plasma spraying and a top layer of metallic material having a lower hardness than the metal carbide. The metal carbide layer has a grainy surface with a plurality of peaks and intermediate depressions, the peaks being formed by metal carbide grains at the surface of the metal carbide layer. The thickness of the top layer is adjusted such that the depressions between the peaks of the metal carbide layer are completely filled thereby providing the rotor with a metal carbide hardfacing of significantly reduced surface roughness. In the process of the invention, the pump rotor, which may be provided with a molybdenum bonding layer, is plasma coated with the metal carbide and the resulting carbide layer is covered with the metallic material top layer. The top layer is polished either until the dimensions thereof are within the tolerances acceptable for the finished rotor or until a majority of the peaks of the carbide layer are exposed. The hardfacing significantly increases the service life of the rotor and stator of downhole progressing cavity pumps.