Abstract:
Demultiplexing systems and methods are discussed which may be small and accurate without moving parts. In some cases, demultiplexing embodiments may include optical filter cavities that include filter baffles and support baffles which may be configured to minimize stray light signal detection and crosstalk. Some of the demultiplexing assembly embodiments may also be configured to efficiently detect U.V. light signals and at least partially compensate for variations in detector responsivity as a function of light signal wavelength.
Abstract:
A directionally-sensitive flame detection apparatus and method for determining the presence of flame in a combustion chamber zone of a gas turbine. A radiation detector (28) is coupled to the monitored combustion zone (32) by a radiation collimator (26) having mechanically-lowered (40,42) internal reflectance so as to enhance the effective collimation angle. In this manner, a narrowed detector view angle (β) is provided that is substantially independent of radiation wavelength or the material properties of the collimator tube
Abstract:
The method for manufacturing opto-electronic modules (1) comprises a) providing a substrate wafer (PW) on which a multitude of detecting members (D) are arranged; b) providing a spacer wafer (SW); c) providing an optics wafer (OW), said optics wafer comprising a multitude of transparent portions (t) transparent for light generally detectable by said detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by said detecting members; d) preparing a wafer stack (2) in which said spacer wafer (SW) is arranged between said substrate wafer (PW) and said optics wafer (OW) such that said detecting members (D) are arranged between said substrate wafer and said optics wafer. Preferably, a multitude of emission members (E) for emitting light generally detectable by said detecting members (D) is arranged on said substrate wafer (PW) such that a multitude of neighboring emission members and detecting members are present on said substrate wafer. Single modules (1) can be obtained by separating said wafer stack (2) into a multitude of separate modules (1).
Abstract:
Solar spectral irradiance (SSI) measurements are important for solar collector/photovoltaic panel efficiency and solar energy resource assessment as well as being important for scientific meteorological/climate observations and material testing research. To date such measurements have exploited modified diffraction grating based scientific instruments which are bulky, expensive, and with low mechanical integrity for generalized deployment. A compact and cost-effective tool for accurately determining the global solar spectra as well as the global horizontal or tilted irradiances as part of on-site solar resource assessments and module performance characterization studies would be beneficial. An instrument with no moving parts for mechanical and environment stability in open field, non-controlled deployments could exploit software to resolve the global, direct and diffuse solar spectra from its measurements within the 280-4000 nm spectral range, in addition to major atmospheric processes, such as air mass, Rayleigh scattering, aerosol extinction, ozone and water vapour absorptions.
Abstract:
Solar spectral irradiance (SSI) measurements are important for solar collector/photovoltaic panel efficiency and solar energy resource assessment as well as being important for scientific meteorological/climate observations and material testing research. To date such measurements have exploited modified diffraction grating based scientific instruments which are bulky, expensive, and with low mechanical integrity for generalized deployment. A compact and cost-effective tool for accurately determining the global solar spectra as well as the global horizontal or tilted irradiances as part of on-site solar resource assessments and module performance characterization studies would be beneficial. An instrument with no moving parts for mechanical and environment stability in open field, non-controlled deployments could exploit software to resolve the global, direct and diffuse solar spectra from its measurements within the 280-4000 nm spectral range, in addition to major atmospheric processes, such as air mass, Rayleigh scattering, aerosol extinction, ozone and water vapour absorptions.
Abstract:
A light detection system may include a light detecting assembly including a plurality of light detectors. Each light detector may include a substrate, a mirror coupled to the substrate, and a light-receiving tube coupled to the substrate. The light-receiving tube may include a sensor positioned at a first end, a light-transmissive opening at a second end that is opposite from the first end, and a plurality of partitions that are configured to block transmission of light energy. A central light path extends through the light-receiving tube. The system may also include a control unit in communication with the light detecting assembly. The control unit is configured to determine one or more of a direction of light emitted from a light source, a position of the light source, or an intensity of light emitted from the light source based on one or more light detection signals received from the light detecting assembly.
Abstract:
A novel standard light source with a more simplified construction, which is suitable for measurement of total luminous flux of a light source different in luminous intensity distribution characteristics from a conventional standard light source, and a measurement method with the use of that standard light source are provided. A standard light source includes a light emitting portion, a power feed portion electrically connected to the light emitting portion, and a restriction portion provided between the light emitting portion and the power feed portion, for restricting propagation of light radiated from the light emitting portion toward the power feed portion. A surface of the restriction portion on which light from the light emitting portion is incident is constructed for diffuse reflection.
Abstract:
Manufacturing opto-electronic modules (1) includes providing a substrate wafer (PW) on which detecting members (D) are arranged; providing a spacer wafer (SW); providing an optics wafer (OW), the optics wafer comprising transparent portions (t) transparent for light generally detectable by the detecting members and at least one blocking portion (b) for substantially attenuating or blocking incident light generally detectable by the detecting members; and preparing a wafer stack (2) in which the spacer wafer (SW) is arranged between the substrate wafer (PW) and the optics wafer (OW) such that the detecting members (D) are arranged between the substrate wafer and the optics wafer. Emission members (E) for emitting light generally detectable by the detecting members (D) can be arranged on the substrate wafer (PW). Single modules (1) can be obtained by separating the wafer stack (2) into separate modules.
Abstract:
A photosensor with customizable angular-response characteristics is presented. This photosensor includes a light-modifier located between the photosensor and a target area to be monitored by the photosensor, wherein the light-modifier provides a customizable angular response for light received at the photosensor from the target area.