Abstract:
A detector has a sensor responsive to a first wavelength, a sensor responsive to a second wavelength, and a sensor for collecting reference readings. A gas sample is analysed to obtain readings corresponding to the first wavelength, the second wavelength and a reference. A first absorption figure is calculated using the first reading and the reference reading, and a second absorption figure using the second reading and the reference reading. A lineariser function is applied to the first and second absorption figures to calculate first and second concentration figures. The sensor for each wavelength is calibrated for detecting the first gas such that the data collected at each wavelength gives the same reading when only the first gas is present. The ratio of the first concentration figure to the second concentration figure is used to identify whether only the first gas is present.
Abstract:
The fire detector includes a carbon dioxide sensor and a microcomputer. When the rate of increase of the concentration of carbon dioxide at the sensor exceeds a threshold, an alarm is produced. The threshold is set at one of three possible levels by the microcomputer in response to the state of the atmosphere at the sensor as determined by the microcomputer based on several variables that are derived from the sensed concentration of carbon dioxide. The derived variables include the average concentration of carbon dioxide, the average rate of change of carbon dioxide concentration, the monotonicity of the increase or decrease of the carbon dioxide concentration and the range of concentrations sensed in each cycle of operation. The threshold setting is determined every ten seconds. In this way, the setting of the rate threshold is responsive to variations in the carbon dioxide level at the sensor that are caused by entities other than a fire, such as the presence or absence of people in a closed room.
Abstract:
A diffusion-type gas sample chamber for use in a gas analyzer consists of an elongated hollow tube having an inwardly-facing specularly-reflective surface that permits the tube to function also as a light pipe for transmitting radiation from a source to a detector through the sample gas. A number of filtering apertures in the wall of the otherwise non-porous hollow tube permit the sample gas to enter and exit freely under ambient pressure. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.
Abstract:
A densitometer includes a light source positioned to project light rays to a test surface. A photodetector is positioned to receive light rays from the surface, and has an output which is characteristic of the amount of light received. The densitometer includes a voltage source and a photodetector which generates an output signal which is a function of a measured density and of the voltage of the source. A log amp produces a signal which is substantially proportional to the ratio of the output of the photodetector and a second output signal which is also a function of the voltage of the source.
Abstract:
A method of eliminating additional absorption caused by water vapor in detecting gases wherein absorption of infrared light is used to determine measured abosrption signals and interference absorption signals. The method of eliminating water vapor absorption comprises the steps of emitting infrared light from a light source into an optical cell, and admitting sample gas into the optical cell. The infrared light is passed through the optical cell to a chopper wheel which positions at least two band pass filters and the filtered light emitted from the band pass filters is detected by an infrared radiation detector. The interference caused by water vapor absorption at a measurement channel is subtracted and thus, a true measurement channel which is free of any interference caused by water vapor absorption is produced. The true measurement channel is used to positvely and accurately identify the gas. The method of this invention may also be used to eliminate interference around more than one measurement channel.
Abstract:
A selective gas detecting apparatus for determining the concentration and type of hydrocarbon gas in a gas sample based upon absorption of infrared radiation by the gas sample, the apparatus having two infrared radiation absorption channels with the wavelengths for measurement selected so that one channel at 3.2 microns provides an output signal corresponding to approximately the sum of all hydrocarbons in the gas sample which signal is displayed as an indication of concentration of hydrocarbon gas in the gas sample, and the other channel at 3.4 microns, after essentially being ratioed to the 3.2 micron channel output provides an output signal representative of the type or average type of hydrocarbon in the gas sample, and the ratio of the signal in the two channels is displayed as an indication of the type of hydrocarbon in the gas sample.
Abstract:
A spectrophotometer is shown in which a deuterium lamp emits a plurality of frequencies of interest the beam passes through a filter for selecting the wavelength of the light desired to be incident onto the sample and then onto a beam splitting plate which diverts a relatively small friction of the beam to a first reference photocell. The remaining portion of the beam then is incident directly on a sample tube. The sample tube may be so designed that its transparent walls form a lens focusing the beam on the sample to be tested. The beam then passes through the further wall of the sample tube and is detected by a second testing photocell, the output of which may be compared to the output of the reference photocell to provide a signal indicative of the relative amplitude of the testing beam. The reference photocell may be used to insure that the intensity of the beam incident on the beam splitter remains constant over time so that values output by the testing photocell may be comparable to measurements taken at a later time, without the use of a reference sample for calibration purposes. A sample cell is provided which allows the use of the instrument of the invention in on-line applications in high pressure systems. A particularly preferred method of mounting the deuterium bulb is also shown.
Abstract:
A method of identifying the presence of a first gas such as methane within a sample, for example containing natural gas. A detector is provided having a sensor responsive to a first wavelength, a sensor responsive to a second wavelength, and a sensor for collecting reference readings. A gas sample is analysed to obtain a first absorption reading corresponding to the first wavelength, a second absorption reading corresponding to the second wavelength and a reference reading. A first absorption figure is calculated using the first absorption reading and the reference reading, and a second absorption figure using the second absorption reading and the reference reading. A lineariser function is applied to each of the first and second absorption figures to calculate first and second concentration figures. The sensor for each wavelength is calibrated for detecting the first gas such that the data collected at each wavelength gives the same reading when only said first gas is present in a sample. The ratio of the first concentration figure to the second concentration figure is then calculated, and the ratio used to identify whether only the first gas is present in the sample.
Abstract:
The condition of a road surface in respect of dryness, wetness or icing is determined by contactless measurement of the reflection of light in the infrared range. The reflected light is measured selectively in at least two wavelength ranges (58, 59) simultaneously by a receiver (20). The detection wavelength ranges (58, 59) have a spectral dependence on the surface condition. The quotient of the detected signals is a reliable indication of the corresponding road surface condition.
Abstract:
A portable, battery powered instrument for measuring the amount of material dissolved in a liquid solution employs electro-optic technology based on the Beer-Lambert Law. A sample probe (14) is inserted in a solution to be measured. The results of the measurement are displayed on a display (22). The displayed results are frozen for a predetermined period of time at the expiration of which, the power is turned off to conserve battery power.