Abstract:
PROBLEM TO BE SOLVED: To provide a novel method and a novel means for analyzing spectral data in a spectrometric measuring instrument having a plurality of detecting sub-arrays. SOLUTION: The first offset function is acquired using the first offset data, the second offset function is acquired using the second offset data, a spectral shift is acquired with respect to a sub-array position, in a time selected with respect to the first time, using a difference between the first function and the second offset function, the selected time is positioned between the first time and the second time, and the spectral shift is obtained by interpolating the first function and the second offset function. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
본발명은로다민유도체, 이의제조방법및 이를이용한간세포소포체의 3가철 이온검출방법에관한것으로, 본발명의로다민유도체는 Fe이온과비가역적으로결합하여시프염기의가수분해및 로다민잔기의스피로락탐개환을통한형광변화로 Fe이온을검출할수 있다. 또한, 수용액에서상기로다민유도체는 Fe이온에대한높은선택성및 민감성을가져다른금속이온으로부터 Fe이온을선택적으로검출할수 있다. 특히, HepG2 세포에서로다민유도체는다른세포소기관에비해소포체에국재화되어소포체내에존재하는 Fe이온을검출할수 있다. 따라서, 본발명의로다민유도체는 Fe이온검출용조성물, Fe이온검출용형광화학센서, Fe이온검출용키트또는신경퇴행성질환의진단또는예후예측용조성물로화학, 생물학및 환경공학공정에활용될수 있다.
Abstract:
개선된 형광 감쇠 시간 측정을 위한 시스템 및 방법이 제공된다. 디지털로 펄싱된 여기 신호보다 약간 더 빠른 속도로 광 검출기가 샘플링되는 디지털 헤테로다인 기술이 개시된다. 그 결과 교차 상관 주파수가 예를 들어 전계 프로그래밍가능한 게이트 어레이와 같은 저가의 전자회로에 의해 판독될 수 있을 만큼 충분히 낮다. 신호에 있는 위상 정보는 대응하는 광자 검출과 상관을 제공한다.
Abstract:
본 발명은 박피되는 세포에서 비정상성 존재를 확인하기 위한 개선된 방법을 제공한다. 일 구체예에서, 본 발명은 세포 샘플의 스펙트럼 지도를 생성시키고, 스펙트럼 지도의 2원 마스크를 생성하며, 각 세포에서 경계 인공물을 제거한 후, 세포에 상응하는 각 픽셀의 스펙트럼 데이타를 공동부가하여 각 세포의 스펙트럼을 재구성시키는 것을 통해 세포 샘플의 세포 스펙트럼을 재구성하는 방법을 제공한다.
Abstract:
The invention relates to a method for detecting at least one chemical compound V that is contained in a medium (312). Said method has a verification step (420), in which the presence of the compound V in the medium (312) is determined. In addition, the method has an analysis step (424), in which a concentration c of the chemical compound or compounds V is determined. The verification step comprises the following sub-steps: (a1) the medium (312) is irradiated with first analysis radiation (316) of a variable wavelength U, said wavelength U having at least two different values; (a2) a spectral response function A(U) is generated using the radiation (324) that has been absorbed and/or emitted and/or reflected and/or scattered by the medium (312), in response to the first analysis radiation (316); (a3) at least one spectral correlation function K(HU) is formed by comparing the spectral response function(s) A(U) with at least one model function R(U + HU), in which said model function(s) R(U) represent(s) a spectral measured function of a medium (312) that contains the chemical compound V and HU is a co-ordinate shift; (a4) the spectral correlation function(s) K(HU) is examined in a model identification step (418) and conclusions are drawn as to whether the chemical compound(s) V is or are contained in the medium (312). The analysis step (424) has the following sub-steps: (b1) the medium (312) is irradiated with at least second analysis radiation (318) that has at least one excitation wavelength UEX; (b2) at least one spectral analysis function B(UEX, URES) is generated using the radiation (326) of the response wavelength URES that has been absorbed and/or emitted and/or reflected and/or scattered by the medium (312), in response to the second analysis radiation (318) of wavelength UEX and conclusions concerning the concentration c are drawn.