Abstract:
The present disclosure relates to a method for making a transmission electron microscope grid. The method includes: (a) providing a substrate with a graphene layer on a surface of the substrate; (b) applying a carbon nanotube film structure to cover the graphene layer; (c) removing the substrate, to obtain a graphene layer-carbon nanotube film composite structure; and (d) placing the graphene layer-carbon nanotube film composite structure on a grid.
Abstract:
The present invention relates to an arrangement (1) for field emission with at least one extraction grid (1) comprising elements (6) with high electrical and thermal conductivity. The space in between elements (6) is transparent for electrons (5). The present invention further relates to a method to provide field emission electrons (5) from a source, emitted by a cathode (2) and accelerated in an electric field (4) between cathode (2) and at least one extraction grid (1), passing the at least one extraction grid (1) in a direction away from the cathode (2). A high amount of electrons (5) pass through the grid (1) and electrons absorbed by the grid (1) are transferred in high amount as current through the grid (1) with small amount of heat production within the grid (1).
Abstract:
Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally- disposed nanotube fabrics are disclosed, as are CMOS -compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low -power devices that can be employed in radiation-intensive applications.
Abstract:
The present disclosure may provide a field emission device with an enhanced beam convergence. For this, the device may include a gate structure disposed between a cathode electrode and an anode electrode, wherein the gate structure includes a gate electrode and an atomic layer sheet disposed on the gate electrode, the gate electrode facing an emitter and having at least one aperture formed therein.
Abstract:
A device includes an anode, a cathode, and a grid configured to modulate a flow of electrons from the cathode to anode. The grid is made of graphene material which is substantially transparent to the flow of electrons.
Abstract:
A field emission device is configured with a grid that includes nanotubes or nanowires. In one embodiment a cathode, an anode, and a nanotube or nanowire grid are responsive to inputs to produce a potential barrier between the grid and at least one of the cathode and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.
Abstract:
Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid/gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally-disposed nanotube fabrics are disclosed, as are CMOS-compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low-power devices that can be employed in radiation-intensive applications.
Abstract:
An electron emission device includes a cathode device and a gate electrode. The gate electrode is separated and insulted from the cathode device. The gate electrode includes a carbon nanotube layer having a plurality of spaces. A display device includes a cathode device, an anode device spaced from the cathode electrode and a gate electrode. The gate electrode is disposed between the cathode device and the anode device. The cathode device, the anode device and the gate electrode are separated and insulted from each other. The gate electrode comprises a carbon nanotube layer having a plurality of spaces.
Abstract:
A field emission display includes a field emission cathode and an anode electrode plate arranged above the field emission cathode. The filed emission cathode includes a substrate, and a plurality of electron-emitting areas spaced apart from each other and arranged on the substrate. Each of the electron-emitting areas includes a cathode, a gate electrode, and a number of first and second conductive lines. The cathode includes a first conductive substrate and a first carbon nanotube assembly having a plurality of carbon nanotubes each having a cathode emitting end having a needle-shaped tip. The gate electrode is faced to the cathode emitting end. The taper-shaped tips of the cathode emitting ends and the gate have a small size and higher aspect ratio, allowing them to bear a larger emission current at a lower voltage.
Abstract:
Semiconductor devices may be made by forming a silicided layer on a silicon material such as that used to form the extractor of a field emission display. The silicided layer may be self-aligned with the emitter of a field emission display. If the silicided layer is treated at a temperature above 1000.degree. C. by exposure to a nitrogen source, the silicide is resistant to subsequent chemical attack such as that involved in a buffered oxide etching process.