Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component (105) tolerances of an analog radio (100), a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (110) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency parameters.
Abstract:
In a slot format of a received signal, AGC gain update timings (t1 to t4) are shifted every time to disperse and reduce an influence of a noise attributable to a direct current component specific to direct conversion which is accompanied by AGC gain update. In particular, in the case where each of slots in the received signal includes an information portion (data) having a larger code correcting capability and an information portion having a smaller code correcting capability (TPC (transmission power control), TFCI (transport format combination indicator), PILOT), the AGC gain update timing is generated while being shifted in the former information portion, thereby reduce the influence of the noise. When the amount of shift of the AGC gain update timing is set to be larger than that of one symbol of the received signal, the influence of the noise accompanied by the AGC gain update is further reduced.
Abstract:
Disclosed herein is a DC offset cancellation circuit. The DC offset cancellation circuit includes a DC feedback unit configured to vary a DC feedback (DCFB) bandwidth to add at least one mid-bandwidth to the DCFB bandwidth and to provide a delay time in each case in order to reduce the DC droop error that occurs in switching from the high bandwidth (BW) to the mid-BW or from the mid-BW mode to the low BW mode, such that stable settling is ensured.
Abstract:
An AGC circuit for a radio receiver includes a detector converting a high frequency signal into a baseband signal. To reduce generation of a DC offset, the AGC circuit includes: a variable gain amplifier having an amplifier circuit and a high-pass filter, the amplifier circuit amplifying the baseband signal with a variable gain and the high-pass filter coupled to the amplifier circuit and having a cut-off frequency which is variable; a controller supplying a gain control signal; and a blocker temporarily blocking the high frequency signal. Using the block control signal, the controller causes the blocker to start blocking the high frequency signal, before the cut-off frequency of the high-pass filter is switched from high to low.
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
An automatic gain control (AGC) controls the signal amplitude at the input to an analog to digital converter (ADC) input by applying a gain that produces a desired overall amplitude resolution of the patterns actually presented by the signal delivered by the ADC converter. Short RLL patterns will have sufficient resolution for reliable extraction as a result of having sufficient overall amplitude, which thereby strengthens the ability of the read channel to correctly extract data. Moreover, the system determines correct AGC settings responsive to measurements of user data parameters. The system also detects and corrects for DC offsets in the signal whose gain is controlled.
Abstract:
A translation loop modulator and power amplifier in a phase and amplitude modulated transmission environment includes a translation loop having a phase locked loop and that is configured to receive a first modulated signal (PM) and that is also configured to provide a frequency specific modulated signal. The invention also includes a power amplifier configured to receive the frequency specific modulated signal, a variable gain element configured to provide a second modulated signal (AM) to the power amplifier and a switching element configured to receive a portion of an output of the translation loop and a portion of an output power of the power amplifier. The switching element is configured to apply the output portion of the translation loop to an input of the translation loop during a first time period and apply the detected output power portion of the power amplifier to the input of the translation loop during a second time period, thus allowing the phase locked loop in the translation loop to correct for any phase shift caused by the power amplifier.
Abstract:
PROBLEM TO BE SOLVED: To lessen the influence of DC noise due to the AGC gain update in a direct conversion receiver. SOLUTION: As shown with AGC gain update timings t1-t4, etc. in the slot structure of received signals, the timing is shifted every time to disperse and lessen the influence of the DC noise peculiar to the direct conversion accompanying with the AGC gain update. If, especially, the slots of received signals have information (Data) with a high code correcting power and information (TPC, TFCI, PILOT) with a low code correcting power, the AGC gain update timing is shifted in the former information part to generate it, thereby more lessening the influence of the noise. The shift width of the AGC gain update timing is set to be greater than one symbol width of the received signal, thereby further lessening the influence of the noise due to the AGC gain update. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.