Abstract:
A light projecting device includes a base board, a light guiding member, a holding member, a cover, and a positioning member. A plurality of light-emitting elements are arranged in a line on the base board in a main scan direction. The light guiding member faces a radiation surface of the light-emitting elements and guides light projected from the light-emitting elements to an irradiation region of an illuminated object. The holding member holds the base board. The cover covers the base board and the light guiding member. The positioning member positions the light guiding member on the holding member. The holding member and the cover sandwich the light guiding member positioned by the positioning member. The light projecting device includes the holding member, the light guiding member, the base board, and the cover as a single unit which is detachably mountable relative to a chassis of the light projecting device.
Abstract:
An original reading unit has first and second arrays of sensor assemblies extending in a main scanning direction for performing readings of an original document. Each of the sensor assemblies includes a sensor holder that undergoes pivotal movement about a single rotation center as a fulcrum along a wall of a unit base to bring the sensor holder to a predetermined position whereat the sensor holder can be fixed to the units base wall. A line sensor is mounted relative to the sensor holder so as not to be shifted in the main scanning direction or in a sub-scanning direction, and to undergo movement in an approaching or a separating direction so as to be brought into contact with or separated from, respectively, the unit base wall and an original support plate attached to the unit base. A focus setup unit moves the line sensor in the approaching or separating direction and positions the line sensor at a location whereat focus can be adjusted.
Abstract:
Provided are a scanning module and an image reading apparatus having the same. An alignment unit that can align positions of an image sensor and its tilt angles with regard to five degrees of freedom when a coupling position of an alignment member to a frame and a coupling position of a base plate to the alignment member are controlled, is provided, the image sensor can be aligned regardless of whether or not the production of the scanning module is completed, an alignment process is facilitated, and a manufacturing cost is reduce.
Abstract:
The invention includes at least one mechanic adjusting device between the chassis of a scanner and the light base mounted with a light tube. The adjusting device is operated to adjust the position of the light tube to change the relative position with the document to be scanned. Thus, the purpose of adjusting the lightness accepted by the line to be scanned on the document to be scanned can be achieved.
Abstract:
An apparatus and method for adjusting the location of the image sensor in an image reading device is disclosed. The image sensor may be adjusted around or along any of three mutually perpendicular axes which intersect the optical lens system of the image reading device.
Abstract:
Film gate for a virtual contact scanner includes a base having a precision site adapted to receive a solid-state scanner assembly so as to position the sensor photosites at a precise spacing from the film image plane. A separate circuit board carrying control circuits for the scanner assembly is clamped over the scanner with contact terminals aligned with mating input/output terminals of the scanner assembly. Preferably the scanner terminals are aligned with open slots in the substrate and electrical contact is made between the scanner and circuit board terminals by means of compressible electrically conductive pads. Clamping force is concentrated over the region of electrical contact between the circuit board and scanner terminals to assure good electrical contact.
Abstract:
The invention provides a scanner system which in one embodiment includes only a single moving part in the document path, namley a drive roll, which serves not only to move the document through the system, but also to provide a backing against which the document is pushed while a proximate region thereof is being scanned. The invention in an embodiment also provides an opto-mechanical assembly that is shock-mounted to the frame of the system at only three-spaced apart locations, so that the assembly tends to be isolated from vibration and torsional forces.
Abstract:
The invention provides a scanner system which in one embodiment includes only a single moving part in the document path, namley a drive roll, which serves not only to move the document through the system, but also to provide a backing against which the document is pushed while a proximate region thereof is being scanned. The invention in an embodiment also provides an opto-mechanical assembly that is shock-mounted to the frame of the system at only three-spaced apart locations, so that the assembly tends to be isolated from vibration and torsional forces.
Abstract:
An original reading unit is provided that is superior in the performance of the adjustment of line sensors. According to the present invention, between a unit base and a transparent original support plate, multiple sensor assemblies are arranged, to form a zigzag pattern, as a first array for reading an original and a second array for reading the original following the first array. Each of the sensor assemblies includes a sensor holder, a line sensor and a focus setup unit. Each of the sensor holders, which serve as fulcrums, are rotatable at a single pivot (a rotation center), along the wall of a unit base that is parallel to the original support plate. When the sensor holders are rotated and positioned at predetermined locations, they are fixed to the wall. The line sensors 51 are held, relative to the sensor holders, in the main scanning direction and in the sub-scanning direction, and are moved in an approaching or separating direction in which the line sensors approach or are separated from the wall and the original support plate. The focus setup units, each of which includes coil springs and spacers, move the line sensors 51 in the approaching or separating direction, and position the line sensors 51 at locations whereat focuses are adjusted.
Abstract:
An apparatus (100) for assembling components of a color optical scanner subassembly which includes a first filter member (80), a second filter member (70) and a photosensor unit (52). The apparatus includes an imaging means (50, etc.) for impinging an imaging light beam from a line object onto the first and second filter assemblies (80, 70) for producing spatially separated color component images (53, 55, 57) of the line object on the photosensor unit (52). The apparatus (100) also includes a physical adjustment assembly (114, 116, 120, 122, 126, 128, 132, 134, 150, 156, etc.) for holding and selectively adjusting the relative position of the first filter member (80), the second filter member (70) and the photosensor unit (52) in response to data signals generated by the photosensor unit. This positioning accurately locates the filter members relative to the photosensor unit for optimizing performance of the color optical scanner.